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Abstract

A new continuum model has been proposed by Singh, Ceder, and Bazant for the ion interca-
lation dynamics in a single crystal of rechargeable-battery electrode materials. It is based on
the Cahn-Hilliard equation coupled to reaction rate laws as boundary conditions to handle
the transfer of ions between the crystal and the electrolyte. In this thesis, I carefully derive
a second set of boundary conditions—necessary to close the original PDE system—via a
variational analysis of the free energy functional; I include a thermodynamically-consistent
treatment of the reaction rates; I develop a semi-discrete finite volume method for numerical
simulations; and I include a careful asymptotic treatment of the dynamical regimes found
in different limits of the governing equations. Further, I will present several new findings
relevant to batteries:

Defect Interactions: When applied to strongly phase-separating, highly anisotropic mate-
rials such as LiFePO4, this model predicts phase-transformation waves between the lithiated
and unlithiated portions of a crystal. This work extends the analysis of the wave dynamics,
and describes a new mechanism for current capacity fade through the interactions of these
waves with defects in the particle.

Size-Dependent Spinodal and Miscibility Gaps: This work demonstrates that the model
is powerful enough to predict that the spinodal and miscibility gaps shrink as the particle
size decreases. It is also shown that boundary reactions are another general mechanism for
the suppression of phase separation.

Multi-Particle Interactions: This work presents the results of parallel simulations of
several nearby crystals linked together via common parameters in the boundary conditions.
The results demonstrate the so-called “mosaic effect”: the particles tend to fill one at a
time, so much so that the particle being filled actually draws lithium out of the other ones.
Moreover, it is shown that the smaller particles tend to phase separate first, a phenomenon
seen in experiments but difficult to explain with any other theoretical model.

Thesis Supervisor: Martin Z. Bazant
Title: Associate Professor of Chemical Engineering and Mathematics
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Chapter 1

Introduction

1.1 Motivation

An often-overlooked aspect of the energy problem facing modern society is the separation
of production from storage and consumption: many production methods (e.g., solar and
wind) are intermittent, and many consumption targets (e.g., cars and cell phones) cannot
be tethered to the electrical grid. Thus even in an ideal world with renewable-energy power
plants and ubiquitous solar cells, we would still need efficient electrical energy storage tech-
nologies. Such systems—primarily batteries, but also supercapacitors—already power all of
our portable devices and improve the efficiency of hybrid vehicles. However, we eventually
need them to do much more, including drastically reducing gasoline usage in large numbers
of automobiles and helping with load-leveling of the output from power plants.

Unfortunately, rechargeable battery technology requires vast improvements in order to
sustainably meet all of our demands [1]. For instance, they must be more efficient to avoid
wasting energy during cycling1. They must be capable of surviving many more power cycles
without suffering significant performance degradation in order to reduce the number of bat-
teries which are thrown away2. They must be made from safer materials to avoid pollution3.
They must also be made from more plentiful materials4. Finally, and most importantly, they
must have dramatically improved effective energy densities5, power densities, and recharge
times in order to make all-electric or even plugin-hybrid vehicles more feasible.

As technology has improved to address these issues, batteries have become much more
complex systems. As an illustration, consider the “voltaic pile” invented by Alessandro Volta
in 1800. This was simply a stack of alternating copper and zinc plates between which were

1For example, the nickel-metal hydride batteries currently found in electric and hybrid vehicles are only
capable of delivering 66% of the electricity received during charging.

2According to the EPA, over 3 billion batteries are discarded in the U.S. each year.
3Many current batteries contain lead, mercury, cadmium, nickel, cobalt, and other potential toxins.
4For example, we may only have 90 years worth of nickel left on Earth (“Earth’s natural wealth: an

audit”, New Scientist 2605: 34–41, 2007).
5The nickel-metal hydride cells in the Toyota Prius are only charged to 60% capacity and only discharged

to 40% capacity
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placed pieces of cloth soaked in brine. Each copper-cloth-zinc triple is a single electrochemical
cell (the pile is a battery consisting of many of these cells in series). Zinc dissolves in the
brine, losing two electrons in the process. These electrons travel through an external circuit
to the copper plate, at which point they combine with hydrogen ions in the brine to generate
hydrogen gas. Thus, complete knowledge of the cell’s static and dynamic properties only
requires modeling two simple charge transfer reactions and ionic diffusion through the brine;
these physical processes are very well understood. Moreover, many modern electrochemical
systems (lead-acid and other wet-cell batteries) still employ similar designs [100, 28, 68].

The basic principle of lithium-ion batteries is similar to the above: there is an anode
material which tends to give up electrons; a cathode material which tends to attract elec-
trons; and an electrolyte in between which can transport ions between the anode and cathode
without also transporting individual electrons, thus forcing the electrons through an external
circuit. However, the active materials in the electrodes are not metals (though experimental
studies often employ metallic lithium foil as the anode). Instead, they are each “intercala-
tion” compounds with well-defined crystallography capable of accommodating lithium ions
without significant changes to the host structure. In other words, no components of the
system are damaged or used up by the electrochemical reactions which drive the cell. This
allows the insertion/extraction processes to be reversed and the battery to be rechargeable
[68].

Though the principle is the same as the voltaic pile, practical lithium-ion batteries are
necessarily much more complicated. The electrode materials are present in the form of a
fine powder, with individual particles of the active materials typically being smaller than
a micron. The electrode then consists of many such individual particles embedded in the
electrolyte. To allow for the flow of electrons through an external circuit, a paste of the
electrode material must be applied to a metal current collector (say, copper or aluminum foil).
Moreover, the cathode material is often electrically insulating, so it must be interspersed with
conductive carbon powder capable of transporting the electrons to and from the current
collector. A porous separator is positioned between the two electrodes to prevent them
from interacting directly. Finally, safety equipment is also frequently required to prevent
overheating and overcharging.

The typical voltage and charge capacity of lithium-ion cells can be computed using clas-
sical electrochemistry or measured with simple experiments. However, the desired improve-
ments to power density and cycle life can only be made by understanding the dynamical
processes of battery charge and discharge. This is complicated by the many different inter-
acting subsystems which are present. During cell discharge, for example, lithium ions must
diffuse through the anode material to get to the particle/electrolyte interface; a chemical re-
action must occur to move the ion into the electrolyte and free an electron; lithium ions must
diffuse through the porous electrolyte, across the separator, and then through the porous
electrolyte again in the cathode; a different chemical reaction must occur at an individual
cathode particle in which the lithium ion and an electron from the external circuit are in-
serted into the host crystal; finally, the ion must diffuse into the crystal to make room for
further ion insertion reactions. Study of these processes is made more difficult by the large
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range of length scales involved: the electrodes may be a millimeter apart, the individual
particles of active material are typically less than a micron wide, and the ionic diffusion in
the crystals occurs via individual hops between vacancies which are only a few angstroms
apart.

Understanding such systems well enough to determine their faults and improve their
performance therefore involves more than just a knowledge of the physical properties of the
constituent materials. It requires thorough mathematical modeling of the components, their
interactions, and the lithium dynamics during operation. Moreover, the resulting combina-
tion of highly interconnected, nonlinear, integral and partial differential equations is complex
enough to demand study by applied mathematicians.

1.2 Previous Work

John Newman and his research group have pioneered the mathematical modeling of recharge-
able batteries [76, 33, 77]. Their porous electrode theory consists of a very detailed set
of equations for an electrochemical cell, including Butler-Volmer charge-transfer kinetics at
the electrodes, concentrated-solution diffusion of lithium between the electrodes, and porous
diffusion in the composite cathode. Several assumptions are made about the cathode in par-
ticular: each individual particle of the active material is spherical and isotropic; the lithium
kinetics inside these particles obey linear Fickian diffusion; and all nearby particles have
identical lithium concentration fields.

In 1996—by which time porous electrode theory was well-established—John Goode-
nough’s group patented the use of LiFePO4 as a new cathode material for lithium-ion bat-
teries [83]. Their first paper presents an experimental voltage-vs.-lithium-capacity curve for
a cell incorporating LiFePO4, and notes that the voltage is constant until the cell is almost
completely charged or discharged. Gibbs’ phase rule therefore suggests that there are two
thermodynamic phases in the material—one lithium-rich and the other lithium-poor (this
can be visualized by comparing a single crystal of LiFePO4 to a closed container of water:
the H2O-rich liquid phase remains separated from the H2O-poor vapor phase even though
individual H2O molecules can move between the two). The ion kinetics therefore cannot
be described by Fickian diffusion, but rather must be governed by the motion of the phase
boundary between lithiated and unlithiated regions in each particle.

Such kinematics were incorporated into porous electrode theory by Newman and Srini-
vasan [92]. In this so-called “shrinking core” model, the concentrations of the lithium-rich
and lithium-poor phases are fixed constants; lithium transport is still governed by isotropic,
Fickian diffusion; and the sharp interface between the phases is solved for by mass conser-
vation. See Fig. 1-1(a) for a schematic.

Several new findings have shown that this is not a very accurate model for the kinetics
of LiFePO4. First, this material forms a highly anisotropic crystal, so one should not expect
spherically-symmetric diffusion. Indeed, Ceder’s group has used ab initio methods to predict
that the diffusivity in one particular direction is at least 11 orders of magnitude faster
than the diffusivity in either of the other two directions [74]. Lithium should therefore be

17



(a) “Shrinking core” dynamics (b) “Phase transformation wave” dynamics

Figure 1-1: Schematic representation of two models for lithium dynamics in phase-separating
materials. Dark regions are lithium-rich and light regions are lithium-poor; lithium insertion
into the crystal from the surrounding electrolyte is represented by arrows. In the phase
transformation wave model, lithium ions can only move up and down, whereas the phase
boundary moves to the right during lithiation. Figures reproduced from [90].

essentially confined to one-dimensional channels; this unusual behavior has been verified
experimentally [78]. Further, Richardson has published electron microscopy results showing
that the phase boundary is planar, extending across the entire crystal, and therefore must
move in a direction perpendicular to the lithium channels [21]. See Fig. 1-1(b) for a schematic.

It is possible that some modification of the shrinking core model could be devised to sur-
mount these difficulties. However, a major theme of this thesis is that any such model will
fail to capture important aspects of the charging dynamics in phase-separating materials.
The reason is that the shrinking core model accounts for very little of the small-scale physics:
the sharp interface is a purely mathematical construct whose energy is not accounted for in
the reaction rates, diffusion laws, or cell voltage computation; it provides no physical justifi-
cation for the phase separation; and it does not model the dynamics of the phase-separation
process. As we will see, the simple fact that there is some positive energy associated with
the interphase boundary can have important consequences.

1.3 The Cahn-Hilliard with Reactions (CHR) Model

In 2008, Singh, Ceder, and Bazant published a paper [90] which, though similar in some ways
to an earlier study on graphite [48] and another on LiFePO4 [47], developed a significantly
different model for the intercalation dynamics in phase-separating electrodes. Their moti-
vation was to use physically-motivated models to understand the dynamics rather than just
to mimic the kinetics in such materials. Thus, they employed the Cahn-Hilliard equation
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to model the diffusion in, and the phase-separation of, the electrode material. More signifi-
cantly, they used thermodynamically-consistent reaction rate laws for the lithium insertion
and extraction process between the electrolyte and the active crystals. This appears to be
the first work which has coupled a bulk phase-field model to such boundary reactions, and
this has many important consequences for the behavior of the system.

The resulting mathematical model is the first one capable of capturing and explaining the
phase-transformation-wave dynamics seen in experiments on LiFePO4. At the same time,
however, it is sufficiently powerful to describe shrinking-core-like dynamics in different pa-
rameter regimes. Further, Singh et al. made connections to standard experiments performed
on batteries, and in particular made it clear that the Cottrell equation used to derive dif-
fusivities from Potentiostatic Intermittent Titration Technique (PITT) experiments [104] is
probably invalid for materials like LiFePO4.

1.4 Outline of the Thesis

Implicit in the paper by Singh et al. is that there is an energy cost to maintaining an inter-
phase boundary, and that this cost impacts the bulk diffusion and the boundary reactions.
The unifying theme of this thesis is that this energy—effectively a surface tension between
the lithium-rich and lithium-poor phases—can have a dramatic impact on the behavior of a
real battery. Moreover, the fact that the bulk phase-separating dynamics are coupled to re-
action rates at the boundary, and inversely that the reaction rates depend on the interphase
energy, makes the CHR equations an essentially new tool in materials science and chemical
engineering, respectively.

The first part of this thesis is devoted to a very general, theoretical underpinning of
the CHR model and its possible extensions. In Chapter 2, a careful study is made of bulk
phase-field models, and great emphasis is placed on proper boundary conditions missing
from [90]. In Chapter 3, we discuss simple, classical models for reaction rate laws. Though
more sophisticated and realistic models exist, this Chapter will at least provide a derivation
of an extension of the Butler-Volmer equation to our setting, and will correct a minor ther-
modynamic problem with the rate laws employed in [90]. In Chapter 4, we provide a general
introduction to the semi-discrete Finite Volume Method employed by the numerical studies
in later Chapters. In Chapter 5, we derive a stochastic version of the Cahn-Hilliard equation;
though this is unused in later Chapters, such extensions to our theory would be necessary
to capture some of the effects of thermal noise (nucleation, for example). In Chapter 6, we
discuss various dynamical regimes of the CHR system, and in particular provide a derivation
of an important equation from [90].

In the second part of this thesis, we focus on new applications of the CHR model to
battery systems. In Chapter 7, we discuss the interaction of phase transformation waves
with defects in the crystal, and show in particular that this will cause a power loss in
the battery. In Chapter 8, we show that the CHR model predicts that the spinodal and
miscibility gaps will shrink as the particle size decreases. We will also demonstrate that
boundary reactions are a general mechanism for the suppression of phase separation in the
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bulk. In Chapter 9, we discuss certain inter-particle, energetic interactions, and show that
the CHR model very simply explains the so-called mosaic effect and its size dependence.
Finally, Chapter 10 provides concluding remarks and possibilities for future research.
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Chapter 2

Variational Thermodynamics in
Bounded, Open Systems

Most thermodynamics textbooks (e.g., [41, 67, 70]) only discuss systems in which the inde-
pendent variables are spatially uniform. When multiphase systems are studied, the inter-
phase boundary is assumed to be sharp, and many of the thermodynamic variables experience
a discontinuous jump across it. This approach has several disadvantages. First, a theory
for the energy and motion of the interphase boundary must be established separately from
that of the pure phases. Second, it is computationally difficult to track a moving boundary
(this is the so-called “free-boundary problem” in applied mathematics). Third, in real phys-
ical systems, such boundaries are usually diffuse: the transition between phases is gradual
relative to the molecular length scale.

One method for simultaneously overcoming all of these difficulties is to use a diffuse-
interface or phase-field model. In this approach, the changes in the thermodynamic
variables are assumed to be sufficiently smooth to be described using derivatives rather than
discontinuous jumps, but sufficiently severe to impact the local free energy densities. The
diffuse interphase boundary has an energy which is explicitly modeled together with that
of the pure phases. Moreover, a single equation governs the kinetics of the entire system,
obviating the need for explicit tracking of the interface (this makes phase-field models similar
to level set methods). The resulting equations are not exact (in the sense that Maxwell’s
equations are exact for electromagnetic phenomena, for example), but their use has been
extensively justified by comparison to experiments [18, 17, 49, 59].

Van der Waals [96] was the first to study thermodynamic systems in which the free
energy is not a function of the independent variables, but rather is given by a functional—
an integral whose integrand includes the independent variables and their low-order spatial
derivatives. These are now frequently called “Ginzburg-Landau free energy functionals”
due to important—but much later—work on superconductivity by Ginzburg and Landau
[45]. Cahn and Hilliard [18] also independently proposed such functionals for a liquid-vapor
system. This model was extended by Cahn [16] to handle the kinetics of conserved quantities
(i.e. those whose total amounts can only change via fluxes at the boundary; for example,
the number of molecules of a specific chemical species), and again by Allen and Cahn [3]
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to describe the kinetics of non-conserved quantities (which are typically phenomenological
variables used to differentiate phases; for example, degrees of crystallinity, superconductivity,
or liquidity).

Only recently have these methods been applied to battery materials [47, 90, 94]. They
are useful for LiFePO4 in particular since it is known that this material is phase-separating
[83], and that the interface between the lithium-rich and lithium-poor phases is diffuse with
a width of around 10 nm [21]. Singh et al., in particular, have developed a phase-field model
which compares well with experimentally-observed behavior [90]. Obviously, though, these
papers were not meant to introduce the mathematical methods they employed, and future
work may require even more sophisticated modeling. It is therefore the goal of this Chapter
to derive very general phase-field models, and especially to carefully discuss appropriate
boundary conditions.

Whereas traditional thermodynamic systems require only differential and integral calcu-
lus, the natural mathematical tool for systems with a free energy functional is the calculus
of variations [38, 103, 44]. Unfortunately, there are not many references on general vari-
ational approaches to thermodynamics (though see [46]). In particular, most references
make assumptions about their system which are violated by ours, including that it is at
equilibrium [18], that it is infinite [18], or that it is bounded but is energetically isolated
from its surroundings [42]. We will therefore give a careful and general treatment of varia-
tional, non-equilibrium thermodynamics applicable to bounded, open systems. For further
reviews, see [35] for a general introduction, [17, 49] for the Cahn-Hilliard approach to spin-
odal decomposition, [59, 23] for phase-field modeling of microstructural evolution, and [12]
for phase-ordering kinetics and scaling laws.

The only identities used herein are the multivariate multiplication rule

∇ · (sv) = (∇s) · v + s∇ · v (2.1)

and the divergence theorem

∫

V

∇ · v dV =

∮

∂V

n̂ · v dA (2.2)

for any scalar field s(x) and vector field v(x), where n̂ is an outward unit normal on the
boundary of V ).

We can frequently avoid making any assumptions about the independent thermodynamic
fields, and simply label them {φα(x, t)}n

α=1. When it is necessary to make a notational
distinction between conserved and non-conserved fields, we will write {φα}n

α=1 = {cα}nc

α=1 ∪
{ηα}nn

α=1, where n = nc + nn; the cα are conserved and the ηα are non-conserved.

We will need to deal with functions of the form f(x, φ,∇φ) which themselves depend
on a function φ(x, t) and its spatial derivatives. When considering f as a function from
R

d ×R ×R
d to R, we will denote by ∇x the gradient with respect to the first d arguments,

∂f/∂φ the partial derivative with respect to the (d + 1)st argument, and ∇p the gradient
with respect to the last d arguments. The notation ∇ will only be used for the spatial
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gradient of f(x, φ(x, t),∇φ(x, t)), a compound function from R
d × R to R. Similarly, we

use the notation ∂/∂t to mean the partial derivative with respect to time of the compound
function. On the boundary ∂V of our volume V , we will split ∇ into components ∇‖ and
∇⊥ ≡ ∂/∂n which are, respectively, tangent and normal to the boundary. We similarly
split ∇x and ∇p into components ∇x,‖,∇x,⊥ and ∇p,‖, ∇p,⊥. Finally, when considering f
as a function of several variables {φα}n

α=1, we will extend this notation in the obvious way,
using ∂f/∂φβ, ∇p,β, etc. to single out derivatives with respect to a specific variable φβ or
its gradients.

Finally, in rigorous treatments of the calculus of variations, it is necessary to be extremely
careful about the regularity of putative solutions and the space of functions over which one
is optimizing [44]. The purpose of this Chapter is to discuss the practical applications of
this theory rather than its mathematical details. Consequently, we will assume all functions
are “sufficiently differentiable,” look only for “weak” extrema, etc.

2.1 Free Energy Functionals

We first describe how free energy functionals can arise, and derive their most general, low-
order form. Since we are dealing with a bounded system, we allow for the possibility that
the bulk free energy Gbulk must be supplemented by a surface free energy Gsurface to account
for energetic interactions between the system and its environment. The total free energy is
therefore the sum of two different functionals

G[{φα}] = Gbulk[{φα}] + Gsurface[{φα}] . (2.3)

2.1.1 Bulk free energy

We begin with the bulk free energy Gbulk, which is assumed to be the volume integral of a
well-defined, local free energy density g:

Gbulk[{φα}] =

∫

V

g(x, {φα}, {∇φα}, . . .) dV . (2.4)

If all of the thermodynamic fields are spatially uniform, then we assume that g is given
by some known homogeneous free energy density ghom(x, φ1, . . . , φn). Following Cahn and
Hilliard [18], we then expand g in a Taylor series about ghom in terms of the derivatives of
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the φα, stopping at terms which are second-order:

g ≈ ghom(x, {φα}) +
n∑

σ=1

P (σ)(x, {φα}) · ∇φσ

+
1

2

n∑

σ,τ=1

(∇φσ)T · K(στ)(x, {φα}) · (∇φτ )

+
n∑

σ=1

[
d∑

i,j=1

H
(σ)
ij (x, {φα})

∂2φσ

∂xi∂xj

]
.

The vectors P (σ) and the second-rank tensors K(στ) and H(σ) may depend on the thermo-
dynamic variables, but not their derivatives. Further, to avoid using restricted sums, we
take K(στ) = (K(τσ))T for all pairs of indices σ 6= τ . This can also be extended to hold
when σ = τ : in this case, K(σσ) acts as a binary quadratic form, so may be assumed to be
symmetric since its antisymmetric part makes no contribution to the sum above.

By the chain rule,

d∑

i,j=1

H
(σ)
ij

∂2φσ

∂xi∂xj

= ∇ ·
(
H(σ)

∇φσ

)
− (∇x · H(σ)) · ∇φσ −

n∑

τ=1

(∇φτ )
T · ∂H(σ)

∂φτ

· (∇φσ) .

The two rightmost terms of this equality may be absorbed into P (σ) and K(στ), respectively,
leaving

g = ghom(x, {φα}) +
n∑

σ=1

P (σ)(x, {φα}) · ∇φσ

+
1

2

n∑

σ,τ=1

(∇φσ)T · K(στ)(x, {φα}) · (∇φτ )

+
n∑

σ=1

∇ ·
[
H(σ)(x, {φα}) · ∇φσ

]
.

Since Gbulk =
∫

V
g dV , the divergence theorem (2.2) proves that the second-derivative term

only contributes to the free energy via the surface integral

∮

∂V

n∑

σ=1

n̂ ·
(
H(σ) · ∇φσ

)
dA .

We therefore consider this part of the surface contribution to the free energy, and remove it
from our expression for g.

Finally, we make the standard reflection symmetry assumption [18] about the system
that the free energy density is invariant under the transformation ∇φβ 7→ −∇φβ absent any
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spatial gradients among the other φα. This implies that P (β) = 0 for all β, leaving the final
form of the bulk free energy density

g
(
x, {φα}, {∇φα}

)
= ghom(x, {φα}) +

1

2

n∑

σ,τ=1

(∇φσ)T · K(στ)(x, {φα}) · (∇φτ ) . (2.5)

Since this was derived using a Taylor expansion, we are implicitly assuming that all deriva-
tives are small and that higher-order terms are negligible. Of course we do not know a priori
how big the higher-order terms are, so the truncated expansion may only be valid for nearly-
homogeneous systems or for those near their critical temperature. Despite this problem, we
will follow standard practice and assume that the system is always in local quasi-equilibrium,
that there is consequently a well-defined free energy density, and that this density is always
given exactly by (2.5).

The second-order tensors K(στ) are usually called gradient-penalty tensors as they
give the energy contributions of the interphase boundaries. The gradient terms in (2.5) may
be written in block-matrix form:

1

2

(
(∇φ1)

T (∇φ2)
T · · · (∇φn)T

)
·




K(11) K(12) · · · K(1n)

K(21) K(22) · · · K(2n)

...
...

. . .
...

K(n1) K(n2) · · · K(nn)


 ·




∇φ1

∇φ2
...

∇φn


 .

To ensure that this is positive for any non-zero gradients, i.e. to guarantee that there is a

positive free energy associated with any phase boundary, the above block matrix
(
K(στ)

)

must be positive definite. As a corollary, K(σσ) must be positive definite for all σ [56]. This
is further confirmed in § 2.3.3.

2.1.2 Surface free energy

As above, we assume that the surface free energy Gsurface is the surface integral of a well-
defined, local surface free energy density γ:

Gsurface[{φα}] =

∮

∂V

γ(x, {φα}, {∇φα}, . . .) dA . (2.6)
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Using the Taylor expansion and chain rule arguments above, we start with the approximation

γ ≈ γhom(x, {φα}) +
n∑

σ=1

Π(σ)(x, {φα}) · ∇φσ

+
1

2

n∑

σ,τ=1

(∇φσ)T · κ(στ)(x, {φα}) · (∇φτ )

+
n∑

σ=1

∇ ·
[
Ξ(σ)(x, {φα}) · ∇φσ

]
.

By the divergence theorem (2.2), the integrals of the tangential component of the di-
vergence terms above can be transformed into integrals over the boundary of the surface.
However, ∂(∂V ) = ∅, so this integral must be 0. The only non-zero contributions from the
divergence terms above are therefore

∂

∂n

(
n̂T · Ξ(σ) · ∇φσ

)
= n̂T ·

(
∂Ξ(σ)

∂n

)
· ∇φσ +

n∑

τ=1

∂φτ

∂n
n̂T ·

(
∂Ξ(σ)

∂φτ

)
· ∇φσ

+ n̂T · Ξ(σ) · ∂

∂n

(
∇‖φσ +

∂φσ

∂n
n̂

)

by the chain rule. The first term may be included in Π(σ), and the summands in the second
term may be included in κ(τσ). The second-derivative term is therefore reduced to

n∑

σ=1

n̂T · Ξ(σ)(x, {φα}) ·
∂

∂n

(
∇‖φσ +

∂φσ

∂n
n̂

)
.

Again, we assume the system is symmetric with respect to changes in the sign of deriva-
tives along the surface, so there can be no linear dependence upon tangential gradients.
Further, it will be demonstrated below (2.10) that any dependence on normal derivatives
cannot be allowed. We are therefore left with

γ
(
x, {φα}, {∇φα}

)
= γhom(x, {φα}) +

1

2

n∑

σ,τ=1

(∇‖φσ)T · κ(στ)(x, {φα}) · (∇‖φτ ) . (2.7)

As before, we take κ(στ) =
(
κ(τσ)

)T
for all pairs of indices σ and τ . We also take (2.7) to be

accurate despite our lack of information about higher-order terms in the Taylor expansion.

In general, surface energies may be orientation dependent. This is allowed for in the
above via the dependence of γhom and κ(στ) on x. In cases in which this effect is important,
it might be more useful to allow these to be explicit functions of n̂, or to make γ a vector
[15].
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2.2 Thermodynamic Potentials

Extensive thermodynamic variables are those that depend (usually linearly) on the size
of the system or the amount of material in it; examples include the volume of the system
and the number of particles of a given species. Intensive variables, on the other hand, are
scale invariant (pressure and chemical potential, for example). In standard approaches to
thermodynamics, every extensive variable φβ is associated with a conjugate, intensive vari-
able µβ ≡ ∂G/∂φβ called a thermodynamic potential. This is clearly the change in free
energy dG per unit change in φβ for some infinitesimal perturbation dφβ, assuming all other
thermodynamic variables remain fixed. With free energy functionals, however, the thermo-
dynamic variables are not individual scalars, but rather are fields which vary over space. The
partial derivative above is therefore meaningless, and instead the variational derivative
δG/δφβ must be used.

Suppose that one of the fields φβ(x, t) experiences a small, localized perturbation δφβ(x, t)
while all other fields remain fixed. Then the resulting change in free energy may be approx-
imated by Taylor expanding g and γ:

δG ≡ G[φβ + δφβ] − G[φβ]

=

∫

V

[g(x, φβ + δφβ,∇φβ + ∇δφβ) − g(x, φβ,∇φβ)] dV

+

∮

∂V

[γ(x, φβ + δφβ,∇φβ + ∇δφβ) − γ(x, φβ,∇φβ)] dA

≈
∫

V

[
∂g

∂φβ

δφβ + (∇pg) · (∇δφβ)

]
dV +

∮

∂V

[
∂γ

∂φβ

δφβ + (∇pγ) · (∇δφβ)

]
dV

where, without loss of generality, we have suppressed the dependence on the fixed fields
φα6=β in order to minimize notational clutter. Using the multiplication rule (2.1), this can
be rewritten

δG =

∫

V

[
∂g

∂φβ

δφβ − ∇ · (∇pg)δφβ + ∇ · (δφβ∇pg)

]
dV

+

∮

∂V

[
∂γ

∂φβ

δφβ − ∇ · (∇pγ)δφβ + ∇ · (δφβ∇pγ)

]
dA .

The divergence term in the volume integral may be rewritten as a surface integral using
(2.2). Similarly, the surface integral of the tangential part of the second divergence term
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above is 0 by (2.2) since ∂(∂V ) = ∅. Therefore

δG =

∫

V

[
∂g

∂φβ

− ∇ · (∇pg)

]
δφβ dV +

∮

∂V

n̂ · (δφβ∇pg) dA

+

∮

∂V

[
∂γ

∂φβ

− ∇ · (∇pγ)

]
δφβ dA +

∮

∂V

∂

∂n
(δφβ∇p,⊥γ) dA .

Using the chain rule, terms from the last two integrands may be combined

[
−∇ · (∇pγ)

]
δφβ +

∂

∂n

(
δφβ∇p,⊥γ

)

=

[
−∇‖ · (∇p,‖γ) − ∂

∂n
(∇p,⊥γ)

]
δφβ +

(
∂δφβ

∂n

)
∇p,⊥γ + δφβ

∂

∂n

(
∇p,⊥γ

)

=

[
−∇‖ · (∇p,‖γ)

]
δφβ +

(
∂δφβ

∂n

)
∇p,⊥γ .

This leaves the final form for the free energy variation

δG =

∫

V

[
∂g

∂φβ

− ∇ · (∇p,βg)

]
δφβ dV

+

∮

∂V

[
n̂ · ∇p,βg +

∂γ

∂φβ

− ∇‖ · (∇p,‖,βγ)

]
δφβ dA

+

∮

∂V

(
∂δφβ

∂n

)
∇p,⊥,βγ dA .

(2.8)

Note that we have re-introduced the β-dependent notation.

In most introductory discussions of the calculus of variations, it is assumed that the
perturbation is so small relative to the volume of the system that δφβ and its derivatives
are all equal to 0 at the boundaries. In this case, both boundary integrals in (2.8) vanish.
The bracketed term of the volume integral in (2.8) may be moved outside the integral if it is
effectively constant over the support of δφβ, i.e. if the perturbation is very localized. Then
the change in free energy per unit change

∫
V

δφβ dV is the bulk thermodynamic potential

µβ =
δG

δφβ

≡ ∂g

∂φβ

− ∇ · (∇p,βg) . (2.9)

Notice that if g does not depend on the derivatives of φβ, then the usual potential ∂g/∂φβ

is recovered.

In a bounded, open system, one must also consider perturbations which occur near the
boundaries, and therefore cannot always assume that δφβ and its derivatives vanish there.
However, doing so introduces a discontinuity in the thermodynamic potential field at the
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system boundary. As we will discuss in § 2.4.1, gradients in thermodynamic potentials drive
fluxes of the conserved quantities, so a discontinuity in the potential field would be instantly
ameliorated by an infinite flux. We therefore assume that the boundary integrals add to 0.

In the last term of (2.8), δφβ is being differentiated with respect to a direction which
is normal to the surface over which it is being integrated. Consequently, this term cannot
be simplified using integration by parts, so it must be handled separately from the other
boundary integral. We must therefore assume that

∇p,⊥,βγ = 0 , (2.10)

i.e. that the surface free energy density does not depend on normal components of gradients.
Higher-order normal derivatives would cause similar problems, which is why they too were
excluded from (2.7)). Then we simply take

n̂ · (∇p,βg) +
∂γ

∂φβ

− ∇‖ · (∇p,‖,βγ) = 0 (2.11)

as a boundary condition. With these two restrictions, (2.9) gives the thermodynamic poten-
tial in the bulk and near the boundaries.

For non-conserved quantities, one cannot make the physical argument that there should
be no discontinuities in the potential field. Moreover, even for conserved quantities, one could
choose a consistent set of perturbations such that the δG computed above does not suffer
a discontinuity at the boundary. However, other arguments can be made for both of these
conditions based on steady-state (§ 2.3) or global (§ 2.4.2) considerations. Therefore, for both
conserved and non-conserved quantities, we will assume that γ satisfies (2.10) and that the
field satisfies the boundary condition (2.11). Thus (2.9) will always be the thermodynamic
potential at all points in the bulk and the boundary of the system.

The above formulas hold for any free energy density functions as long as they depend
on at most first derivatives of the thermodynamic fields. In particular, for the free energy
densities (2.5) and (2.7) derived earlier, the explicit thermodynamic potential is

µβ(x, t) =
∂ghom

∂φβ

+
1

2

n∑

σ,τ=1

(∇φσ)T · ∂K(στ)

∂φβ

· (∇φτ ) −
n∑

σ=1

∇ ·
(
K(βσ)

∇φσ

)
(2.9′)

and the boundary condition is

n∑

σ=1

n̂ ·
(
K(βσ)

∇φσ

)
+

∂γhom

∂φβ

+
1

2

n∑

σ,τ=1

(∇‖φσ)T · ∂κ(στ)

∂φβ

· (∇‖φτ ) −
n∑

σ=1

∇‖ ·
(
κ(βσ)

∇‖φσ

)
= 0 . (2.11′)

Something like this condition is almost universally employed in Cahn-Hilliard or Allen-
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Cahn analyses of bounded systems. Some mathematicians just use the Neumann condition n̂·
∇φβ = 0 to simplify their proofs. Others use the full condition (2.11) because it is “natural”
for the variational problem; thus it is often called the variational boundary condition.
Finally, some physically-oriented papers use it because it guarantees that the free energy of
a closed system is monotonically decreasing (see § 2.4.2). The above justification is novel,
but physically plausible, at least for conserved fields.

2.3 Steady States

Though we are primarily interested in time-dependent behavior, it is often useful to solve
for steady states, as well. Several conditions for such states can be derived using only the
variational methods discussed above.

2.3.1 Energy extremizing states

Consider the state of a system as a point in an infinite-dimensional landscape of free energy.
If the system is at a local minimum (corresponding to a metastable or equilibrium state),
then the change in free energy resulting from any sufficiently small perturbation of the
thermodynamic fields must be positive. If we consider highly-localized, bulk perturbations
to a single φβ as discussed above, then δG =

∫
V

µβδφβ dV by (2.8) and (2.9). If µβ 6= 0
at any point, then one can choose a δφβ which is localized around this point and has the
opposite arithmetic sign as µβ there. But then δG < 0, contradicting the minimality of the
system’s free energy. Therefore, the following must hold:

µβ(x) = 0 ∀x ∈ V and ∀β . (2.12)

Note that this argument (that
∫

V
µβδφβ dV = 0 ∀δφβ implies that µβ must be zero) can be

proven rigorously. It is sometimes called the “Fundamental Lemma of Variational Calculus”
[44]. Also, by definition of µβ in Eq. 2.9, (2.12) is a second-order differential equation; it is
known as the Euler-Lagrange equation from the calculus of variations, and could have
been quoted directly as a condition for minimizing the free energy functional.

If the system is truly at a free energy minimum, then δG > 0 must also hold for perturba-
tions which do not necessarily vanish at the boundaries. Consider the class of perturbations
which are highly localized near the boundaries, but for which ∂(δφβ)/∂n = 0 on ∂V . Then
the third integral in (2.8) is 0, and the first integral is 0 by (2.12). The free energy varia-
tion may therefore be written δG =

∮
∂V

[
n̂ · ∇p,βg + ∂γ/∂φβ − ∇‖,β · (∇p,‖,βγ)

]
δφβ dA. As

above, unless the term in brackets is identically 0 over the entire boundary, then one can
generate a perturbation for which δG < 0. Therefore, any state which is at a free energy
minimum must satisfy the variational boundary condition (2.11).

Finally, using (2.12) and (2.11) to simplify (2.8) yields δG =
∮

∂V
(∂δφβ/∂n)∇p,⊥,βγ dA.

Again, if ∇p,⊥,βγ is non-zero at any point on the boundary, then one can create a pertur-
bation whose normal derivative is of the opposite sign around that point, yielding δG < 0.
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Therefore, any minimum energy state must also satisfy (2.10).

Note that the arguments above can also be used to identify energy-maximizing states.
More generally, (2.12), (2.10), and (2.11) are conditions for any critical state—minimum,
maximum, or saddle—about which infinitesimal perturbations yield no first-order change
in free energy. Moreover, these are only necessary conditions; see § 2.3.3 for sufficient
conditions.

2.3.2 Constrained extremizing states

Of course, a real system cannot necessarily be perturbed arbitrarily. For example, if cβ is a
conserved thermodynamic field, then the total quantity

∫
cβ dV cannot change spontaneously

without fluxes into or out of the system via the external environment. We therefore define
a stable state as one for which any sufficiently small, allowable perturbation results in a
positive free energy change. Of course, such a state might still be an absolute minimizer of
the free energy as considered above; however, it is only required that it be a minimizer with
respect to the constrained set of allowable perturbations.

In general, there are no constraints on the infinitesimal perturbations of non-conserved
quantities, so the conclusions from the previous section—and specifically Eq. 2.12—are still
required. For a conserved quantity cβ, however, bulk perturbations (i.e. those which do not
involve boundary fluxes) must satisfy

∫
V

δcβ dV = 0. We again apply (2.8) for perturbations
which vanish on the boundary to get δG =

∫
V

µβδcβ dV . If there exists a small, connected
set in V over which µβ is non-constant, then one could construct a perturbation δcβ confined
to this set for which δG < 0. This contradicts the above definition of a stable state, so µβ

must be constant on every connected set in V . We only work with connected geometries; in
this case, then, µβ must be constant over all of V . Note that this conclusion is essentially
just another form of the Fundamental Lemma of Variational Calculus [44]. It also follows
more abstractly by the method of Lagrange multipliers—specialized to the variational setting
[103, 44]—in which one extremizes the free energy functional subject to the constraint that∫

V
cβ dV is fixed.

As in the previous section, we also require δG ≥ 0 for perturbations at the boundaries.
Thus, even before considering constitutive relations for our fluxes, we can conclude that
(2.10) must hold in order for stable states to exist, and such states must satisfy the variational
boundary condition (2.11).

We have so far only considered bulk fluctuations. If fluxes of the conserved quantity are
allowed between the system and its external environment, then perturbations in the form
of small fluxes must also be considered. However, this is a more classical problem, and it is
well-known [41] that the system-universe interface will be stable to such variations as long
as the thermodynamic potentials of cβ in the system and the external universe are the same.
Thus, µβ,ext = µβ,0 must hold for the thermodynamic potential of cβ near, but outside, the
boundaries.
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To summarize, a necessary condition on the conserved fields for a stable state is

∃µβ,0 ∈ R such that µβ(x) = µβ,0 ∀x ∈ V , (2.13a)

µβ,ext = µβ,0 just outside of V . (2.13b)

As before, it takes the form of a second-order differential equation (though because of the
possibly non-zero constant µβ,0, this is not the Euler-Lagrange equation). It is an important
fact that, in general, there exist non-uniform solutions cβ(x) to the equation µβ(x) = µβ,0,
even for non-zero µβ,0. See Fig. 2-1 for an example.

The Beltrami identity

By using the equality of mixed partials ∂2φσ/∂xi∂xj = ∂2φσ/∂xj∂xi, the gradient of g may
be written

∇g = ∇xg +
n∑

σ=1

{
∂g

∂φσ

∇φσ +
[
(∇p,σg) · ∇

]
∇φσ

}
.

Using (2.9), the necessary condition for an extremal state may be written

∂g

∂φσ

= µσ,0 + ∇ · (∇p,σg)

(we must take µσ,0 to be 0 for non-conserved quantities). Substituting this into the gradient
above yields

∇

[
g −

n∑

σ=1

µσ,0φσ

]
= ∇xg +

n∑

σ=1

{[
∇ · (∇p,σg)

]
∇φσ +

[
(∇p,σg) · ∇

]
∇φσ

}

(using the fact that each µσ,0 is a constant). Finally, using the identities

∇ · (A ⊗ B) = (∇ · A)B + (A · ∇)B

∇s = ∇ · (sI)

for any vector fields A and B and scalar field s (⊗ denotes the tensor, or outer, product of
two vectors, and I = δij is the Kronecker delta tensor) allows us to write

∇ ·
[(

g −
n∑

σ=1

µσ,0φσ

)
I −

n∑

σ=1

(∇p,σg) ⊗ (∇φσ)

]
= ∇xg . (2.14)

This is a generalization of Noether’s equation from the calculus of variations [44].

In the typical case in which g does not depend explicitly on x (i.e. ∇xg = 0), the tensor
in brackets in (2.14) is divergence-free. In the 1-dimensional case (d = 1), then, Noether’s
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Figure 2-1: Simulation results demonstrating that an equilibrium concentration field can be
non-uniform but still have a uniform, non-zero thermodynamic potential. The free energy
density was assumed to satisfy (2.5) with non-dimensional homogeneous free energy density
ghom(c) = 5c(1 − c) + c log(c) + (1 − c) log(1 − c) and non-dimensional gradient-penalty
tensor equal to the identity. Top row: initial condition. Bottom row: final state after a long
relaxation period.
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equation may be integrated to get

g −
n∑

σ=1

∂g

∂(∂φσ/∂x)

∂φσ

∂x
−

n∑

σ=1

µσ,0φσ = C (2.15)

for some constant C. This is a generalization of the Beltrami identity from the calculus of
variations. Note in particular that if we have only a single thermodynamic field (so n = 1),
then our necessary condition for a steady state has been simplified from a second-order to a
first-order ODE.

The Beltrami identity is extremely specialized: one cannot usually find a first integral of
the necessary condition in higher dimensions even when strong symmetry conditions apply.
For example, even if we assume that ∇xg = 0, that every φσ is a function only of the radius
r in polar (d = 2) or spherical (d = 3) coordinates, and that ∇p,σg = (∂φσ/∂r)r̂ for each σ,
then (2.14) is simply

∂

∂r

[
g −

n∑

σ=1

µσ,0φσ

]
=

1

rd−1

∂

∂r

[
rd−1

n∑

σ=1

(
∂φσ

∂r

)2
]

which cannot necessarily be written in closed form as a derivative with respect to r. Note
that (2.14) is integrable if all variables are functions only of the angle in polar coordinates
or the longitude in spherical coordinates; however, these are atypical symmetries in diffusion
problems.

Infinite 1-dimensional geometries

We now specialize to free energy densities of the form (2.5) in d = 1 spatial dimension and
with n = 1 thermodynamic field (so we can drop the superscripts and subscripts identifying
the field). The necessary condition for a steady state is then

ghom

(
φ(x)

)
− 1

2
K

(
φ(x)

)(
∂φ

∂x

)2

− µ0φ(x) = C (2.15′)

subject to the Neumann conditions ∂φ/∂x = 0 at the boundaries. This is equivalent to the
derivation in mechanics that the Hamiltonian is conserved if the Lagrangian is not explicitly
a function of time.

We first consider an infinite geometry, and assume that the limits

φlower ≡ lim
x→−∞

φ(x)

φupper ≡ lim
x→+∞

φ(x)

both exist. In a two-phase system, we may assume without loss of generality that φlower <
φupper. Far away from the interphase boundary, φ′(x) and φ′′(x) should both tend to 0.
Then by (2.9) the potential must be µ0 = g′

hom(φlower) = g′
hom(φupper) (this is just the
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classical common tangent construction), and by (2.15′) the integration constant must
be C = ghom(φlower) − µ0φlower = ghom(φupper) − µ0φupper. If we then seek some asymptotic
approximation φ(x) ∼ φlower + ε(x) as x → −∞, we can expand (2.15′) to get the ODE

1

2
g′′
hom(φlower)ε(x)2 − 1

2
K(φlower)ε

′(x)2 = 0 .

The non-constant solutions of this equation which decay as x → −∞ are given by

ε(x) = exp

(√
g′′
hom(φlower)

K(φlower)
(x − x0)

)

for any constant x0. Thus, the decay away from the interphase boundary towards x = −∞
is exponential with an associated length scale of

√
K(φlower)/g′′

hom(φlower). Similarly, the ap-

proach towards φupper as x → +∞ is exponential with length scale
√

K(φupper)/g′′
hom(φlower).

The interphase boundary—defined as the region in which φ changes rapidly—is therefore
exponentially sharp, and so effectively finite in extent. Beyond this region, the system is
considered to be in one of the “pure phases” φ ≈ φlower or φ ≈ φupper.

In the interphase region, there must be some inflection point xinf at which φ′′(xinf) = 0.
At this point, the slope of the curve φ(x) is at a maximum. Define φinf ≡ φ(xinf); as long
as K and ghom are known functions of φ, φinf can be computed in terms of φlower or φupper.
From (2.15′) and using the fact that C = ghom(φlower) − µ0φlower, the maximum slope of the
curve is evidently

φ′(xinf) =

√
2 [ghom(φinf) − ghom(φlower) − µ0(φinf − φlower)]

K(φinf)
.

Taking this slope to equal (φupper − φlower)/w where w is a characteristic width of the inter-
phase region, we see that

w = (φupper − φlower)

√
K(φinf)

2 [ghom(φinf) − ghom(φlower) − µ0(φinf − φlower)]
.

This is the source of the general rule for phase-field models like ours that the gradient
penalty tensor divided by some typical energy scale gives the square of the typical lengths for
the interphase width (though this could also be argued for on purely dimensional grounds,
as well). This rule is extended to higher dimensions by considering the eigenvalues of the
gradient penalty tensor.

There is a special case for which the Beltrami identity can be solved exactly. Suppose
that K is constant and ghom is given by the Landau free energy ghom(φ) = 1

2
E(1 − φ2)2 for

some positive constant E (this is the simplest double-welled free energy function). Then the
common tangent construction requires φlower = −1, φupper = +1, and µ0 = 0. The Beltrami
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identity then becomes 1
2
E(1 − φ2)2 − 1

2
K(φ′)2 = 0, which has solutions of the form

φ(x) = tanh

(√
E

K
(x − x0)

)

for any constant x0. Notice that the phase boundary is centered at x0, and is exponentially
sharp with characteristic width

√
K/E.

Finite 1-dimensional geometries

In a bounded system (say V = [xlower, xupper]), we may define the quantities φlower ≡ φ(xlower)
and φupper ≡ φ(xupper) directly rather than via limits. If we ignore surface energies, then
the variational boundary condition (2.11) is simply φ′(xlower) = φ′(xupper) = 0. However,
the system might not have sufficient room for the second derivatives to also reach 0 at the
boundaries. Therefore the common tangent construction is not exactly applicable, and no
simple statements like those above can be made.

2.3.3 Energy minimizing states

None of the conditions derived above are sufficient to guarantee that a given state is a local
minimum. As with ordinary differential calculus in which the second derivative must be
employed to classify critical points, one must examine higher-order changes in G in order to
classify the critical states.

In deriving the thermodynamic potential, we started by expanding g and γ in a Taylor
series and keeping only the first-order terms. If instead we keep terms up to second-order,
we get

G[φβ + δφβ] − G[φβ] ≈ δG + δ2G ,

where δG, given by (2.8), is 0 for critical states, and

δ2G ≡
∫

V

{(
∂2g

∂φ2
β

)
(δφβ)2 +

(
∂

∂φβ

∇p,βg

)
· (δφβ∇δφβ)

+ (∇δφβ)T · (∇p,β∇p,βg) · (∇δφβ)

}
dV

+

∮

∂V

{(
∂2γ

∂φ2
β

)
(δφβ)2 +

(
∂

∂φβ

∇p,βγ

)
· (δφβ∇δφβ)

+ (∇δφβ)T · (∇p,β∇p,βγ) · (∇δφβ)

}
dA

(2.16)

is the second variation of G. Then if δ2G > 0 for all allowable perturbations δφβ, the
critical state is a true local minimum (though this problem requires more care about the
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space of allowable perturbations [44]).

In general, this is an integro-differential inequality that must hold for all allowable per-
turbations. Unlike in previous sections in which “allowable” simply meant

∫
V

δcβ dV = 0
for perturbations to conserved fields, we must now also restrict ourselves to perturbations
which maintain the boundary conditions (2.11). Proving this inequality is therefore almost
impossibly difficult for general critical states.

We first note that it is proven in [36] that if δ2G > 0, then ∇p,β∇p,βg must be positive
definite at every point in V . If we use the free energy density derived earlier (2.5), then
∇p,β∇p,βg = K(ββ). This is the rigorous, mathematical proof that K(ββ) must be positive
definite: it is required in order for a minimum-energy state to exist.

We can only make further progress at the expense of being overly strict. In general, the
integrands in (2.16) may be negative at some points in V and still satisfy δ2G > 0. However,
δ2G is obviously positive if the integrands happen to be pointwise positive. Consider the
integrand of the volume integral in (2.16). It may be written as a binary quadratic form:

(
δφβ (∇φβ)T

)
·


 ∂2g/∂φ2

β
1
2

(
∂

∂φ
β

∇p,βg
)T

1
2

∂
∂φ

β

∇p,βg ∇p,β∇p,βg


 ·

(
δφβ

(∇φβ)T

)
.

If we take g to be given by (2.5) and assume only that ∂K(βσ)/∂φβ = 0 for all σ, then this
may be written

(
δφβ (∇φβ)T

)
·
(

∂2ghom/∂φ2
β 0T

0 K(ββ)

)
·
(

δφβ

(∇φβ)T

)
.

We already know that K(ββ) must be positive definite. Therefore, the above form is positive
definite if and only if ∂2ghom/∂φ2

β > 0 [56]. The same computation can be done for the
surface integral in (2.16). Therefore,

∀β,
∂2ghom

∂φ2
β

> 0 ∀x ∈ V and
∂2γhom

∂φ2
β

≥ 0 ∀x ∈ ∂V (2.17)

is a sufficient condition for a critical state to be a stable energy minimizer. We will see in
Chapter 8 that this is, indeed, overly strict.

2.4 Dynamic Approach to Equilibrium

Though we have found several simple relations that must hold at equilibrium, we have
said nothing about the out-of-equilibrium dynamics. To do so, we must postulate certain
phenomenological relations for the kinetics. We will present the standard assumptions in
general form, and demonstrate several nice properties thereof.
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2.4.1 Kinetic equations

Every conserved field must satisfy the local conservation law

∂cβ

∂t
= −∇ · Jβ , (2.18)

where Jβ(x, t) is a field of flux vectors for quantities of type β. In general, this vector cannot
be computed from first principles, but rather must be assumed to satisfy some phenomeno-
logical equation. We will make the standard assumption of non-equilibrium thermodynamics
[81, 26] that each flux depends at most linearly on the gradients of the thermodynamic po-
tentials of all of the conserved quantities. Thus, we write

Jβ(x, t) =
nc∑

σ=1

L(βσ)(x, {φα}) · ∇µσ , (2.19)

where the sum is taken over all conserved fields. The second-rank tensors L(βσ) are called
Onsager coefficients. When cβ is the concentration field for a chemical species, one usually
writes L(ββ) = cβBβ where Bβ is the mobility tensor for species β; thus, the above is
essentially a generalization of Fick’s first law and the Nernst-Planck equation.

For non-conserved quantities, the form of the kinetic equations are non-obvious given that
the fields themselves are usually phenomenological order parameters. However, we follow a
common generalization of the original Allen-Cahn equation [3] in assuming that

∂ηβ

∂t
= −

nn∑

σ=1

Λ(βσ)(x, {φα})µσ , (2.20)

where the sum is taken over all non-conserved fields. The scalars Λ(βσ) are called general-
ized Onsager coefficients. This is not physically-motivated, but is rather assumed as the
simplest kinetic equation which is consistent with the Second Law of Thermodynamics (see
§ 2.4.2).

2.4.2 Global time derivatives

For any conserved field cβ, define the total content of type β by

Qβ(t) ≡
∫

V

cβ(x, t) dV . (2.21)

Then clearly
dQβ

dt
= −

∮

∂V

n̂ · Jβ dA (2.22)

using only the divergence theorem (2.2) and the local conservation law (2.18). This is
intuitively obvious: the only way the total content of the system can change is via a flux
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through the boundary. Note that the integral conservation law (2.22) is more fundamental
than, and is typically used to derive, the local conservation law (2.18), not vice versa.

Computing the time derivative of the total free energy of the system requires a bit more
care. By the chain rule,

dG

dt
=

∫

V

∂g

∂t
dV +

∮

∂V

∂γ

∂t
dA

=

∫

V

n∑

σ=1

[
∂g

∂φσ

∂φσ

∂t
+ (∇p,σg) · ∇

(
∂φσ

∂t

)]
dV

+

∮

∂V

n∑

σ=1

[
∂γ

∂φσ

∂φσ

∂t
+ (∇p,σγ) · ∇

(
∂φσ

∂t

)]
dA .

Then following the same sequence of steps used to derive (2.8), we see that

dG

dt
=

∫

V

n∑

σ=1

[
∂g

∂φσ

− ∇ · (∇p,σg)

]
∂φσ

∂t
dV

+

∮

∂V

n∑

σ=1

[
n̂ · ∇p,σg +

∂γ

∂φσ

− ∇‖ · (∇p,‖,σγ)

]
∂φσ

∂t
dA

+

∮

∂V

n∑

σ=1

(
∂(∂φσ/∂t)

∂n

)
∇p,⊥,σγ dA .

The surface integrals are identically 0 by (2.11) and (2.10). Then using the definition of the
thermodynamic potential (2.9), we get the simplified expression

dG

dt
=

∫

V

n∑

σ=1

µσ
∂φσ

∂t
dV . (2.23)

Given that we defined the thermodynamic potentials to be the change in free energy per
unit change in the independent field, this equation makes intuitive sense. However, with a
bit more work, a more useful relation can be derived. First, we split the above sum into
its non-conserved and conserved components, and we replace the time derivatives using the
kinetic equations (2.20) and (2.18):

dG

dt
= −

∫

V

nn∑

σ,τ=1

µσΛ(στ)µτ dV −
∫

V

nc∑

σ=1

µσ∇ · Jσ dV .

The second integral may be rewritten using the multiplication rule (2.1):

dG

dt
= −

∫

V

nn∑

σ,τ=1

µσΛ(στ)µτ dV +

∫

V

nc∑

σ=1

(∇µσ) · Jσ dV −
∫

V

nc∑

σ=1

∇ · (µσJσ) dV .
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By the divergence theorem (2.2), the last integral is really a surface integral:

dG

dt
= −

∫

V

nn∑

σ,τ=1

µσΛ(στ)µτ dV +

∫

V

nc∑

σ=1

(∇µσ) · Jσ dV −
∮

∂V

nc∑

σ=1

µσn̂ · Jσ dA .

Finally, using the flux equation (2.19) yields

dG

dt
= −

∫

V

nn∑

σ,τ=1

µσΛ(στ)µτ dV −
∫

V

nc∑

σ,τ=1

(∇µσ)T · L(στ) · (∇µτ ) dV

−
∮

∂V

nc∑

σ=1

µσn̂ · Jσ dA .

(2.24)

The first two integrals in this expression quantify the free energy dissipation due to relaxation
in the bulk. The third integral is the free energy loss due to the outflow of conserved
quantities.

Now suppose that there are no fluxes across the boundary. Then the system is closed,
and by the Second Law of Thermodynamics, G must be non-increasing for any set of initial
conditions. Notice that the two volume integrands from (2.24) may be rewritten in block-
matrix form:

−
(
µ1 µ2 · · · µnn

)
·




Λ(11) Λ(12) · · · Λ(1nn)

Λ(21) Λ(22) · · · Λ(2nn)

...
...

. . .
...

Λ(nn1) Λ(nn2) · · · Λ(nnnn)


 ·




µ1

µ2
...

µnn




and

−
(
(∇µ1)

T (∇µ2)
T · · · (∇µnc

)T
)
·




L(11) L(12) · · · L(1nc)

L(21) L(22) · · · L(2nc)

...
...

. . .
...

L(nc1) L(nc2) · · · L(ncnc)


 ·




∇µ1

∇µ2
...

∇µnc


 .

To ensure that this is non-positive for any set of potentials and their gradients, the above

matrix
(
Λ(στ)

)
and block matrix

(
L(στ)

)
must both be positive semi-definite. In the typical

case in which cross terms Λ(στ) and L(στ) for σ 6= τ are assumed to be 0, this is equivalent
to requiring that Λ(σσ) and L(σσ) be positive semi-definite for all σ [56].

In many treatments of phase-field models, the variational boundary condition (2.11) is
only justified as a method to ensure that G is non-increasing in the absence of boundary
fluxes (see, for example, [42]). Many mathematical studies also rely heavily on the condition
that dG/dt ≤ 0, i.e. that G is a Lyapunov function. Note, however, that in the general
case in which boundary fluxes are allowed, this property does not necessarily hold: even
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if the above matrices are positive semi-definite, the boundary integral in (2.24) may force
dG/dt to be positive. While the total free energy of the universe is decreasing, the free
energy of our particular system may be increasing due to interactions with its surroundings.
We always make the positive semi-definiteness assumption above, so there will always be
bulk relaxation. However, we can only get a genuine Lyapunov function in the general case
by including the free energy of the exterior system (assuming only that the boundary fluxes
occur in the direction of decreasing thermodynamic potentials).

2.4.3 Boundary conditions

When solving problems in a bounded geometry, the kinetic equations above must be closed
by an appropriate number of boundary conditions. By (2.9), the thermodynamic potentials
are all functions involving second-order derivatives of the corresponding independent fields.
Then the kinetic equation for non-conserved fields (2.20) is also second-order in space, while
the equation for conserved fields (2.18) is fourth-order. One therefore needs one condition
for non-conserved fields and two for conserved quantities at every point on ∂V (thus totaling
2 and 4 boundary conditions, respectively).

When standard thermodynamic transport equations are employed, only a single set of
boundary conditions is required, and they are usually physically obvious. For example, when
using Fourier’s law for heat transfer, one might hold the boundaries at a fixed temperature
(Dirichlet boundary conditions); or when using Fick’s law for diffusion, one might have
a condition on the fluxes at the boundaries (Neumann boundary conditions). This is more
difficult in the phase-field setting. Non-conserved fields are typically phenomenological order
parameters; as such, they have no fluxes, and the physical significance of any particular
boundary condition is unclear. One can certainly develop laws for the fluxes of conserved
quantities, but as mentioned above, these still must be supplemented by an additional set of
boundary conditions.

It is for this reason that we have emphasized the variational boundary condition (2.11)
throughout this Chapter. It provides the only boundary condition necessary for non-conserved
fields, and it supplements any flux laws for conserved quantities we might have. When try-
ing to generate solutions to any of these partial differential equations in a bounded system,
(2.11) is absolutely necessary. This is a non-trivial point: according to Giaquinta and Hilde-
brandt [44], even Euler and Lagrange were unable to derive these conditions in more than
one dimension.

2.5 Single-Species Diffusion in a Crystal

Most of this thesis is focused on the case of a single species diffusing through a crystal
without significantly affecting the host structure. In this case, the only thermodynamic field
is the concentration of the single species. We will specialize to a free energy functional of
the form (2.5), so must first discuss its homogeneous component.

43



Define ρ to be the site density (in molecules per unit volume) in the crystal, i.e. the
density of the diffusing species plus the density of vacancies. We will assume that ρ is
a constant independent of the local concentration (the small dependence present in real
systems is usually only important when elastic effects are considered). The scalar field of
interest is c(x, t), the local concentration of the diffusing species. Let c be normalized by ρ,
so it is non-dimensional and only takes values between 0 and 1.

With these definitions, a common assumption for the homogeneous free energy is that it
obeys the regular solution model [84]:

ghom(c) = gLρc + gF ρ(1 − c) + aρc(1 − c) + ρkBT [c log c + (1 − c) log(1 − c)] . (2.25)

Here gL is the chemical potential of a crystal completely filled with the diffusing species (e.g.,
pure LiFePO4); gF is the chemical potential of a crystal completely devoid of the diffusing
species (e.g., pure FePO4); a is the excess energy of the species-vacancy nearest-neighbor
interactions over species-species and vacancy-vacancy interactions; kB is Boltzmann’s con-
stant; and T is the temperature. The a term gives the enthalpy density of mixing and the
logarithmic term gives the entropy density of mixing.

We will not consider surface energies and will assume that the gradient penalty tensor is
a constant. Then (2.5), (2.9′), (2.19), (2.18), and (2.11′) may be written

G =

∫

V

ρ

{
gLc + gF (1 − c) + ac(1 − c) + kBT

[
c log c + (1 − c) log(1 − c)

]

+
1

2
(∇c)T K(∇c)

}
dV

(2.26a)

µ = gL − gF + a(1 − 2c) + kBT log

(
c

1 − c

)
− ∇ · (K∇c) (2.26b)

J = −ρcB∇µ = −ρcB

{[
−2a +

kBT

c(1 − c)

]
∇c − ∇

[
∇ · (K∇c)

]}
(2.26c)

∂c

∂t
= −1

ρ
∇ · J = ∇ · (cB∇µ) (2.26d)

with boundary conditions

n̂ · (K∇c) = 0 (2.26e)

n̂ · J = −ρsR(x, c, µ) . (2.26f)

In the boundary condition on the flux, ρs is the surface site density and R is the net influx of
the diffusional species from the external universe. This influx is usually considered the result
of some reaction, so the rate will typically depend on the local concentration and chemical
potential.
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2.5.1 Non-dimensionalized gradient penalty tensor

In order to reduce the complexity of the above equations, it is frequently useful to non-
dimensionalize the parameters. This can be done in many different ways, and the “best”
time- and length-scales will depend on the exact problem being studied. However, there is
a very simple coordinate system which is natural for this set of equations.

In § 2.1.1, we showed that K is symmetric. By standard results from linear algebra, K

therefore has a complete set of orthogonal eigenvectors. In other words, applying a rotation
to the physical space R

d will transform K into a diagonal matrix.

In § 2.1.1 and § 2.3.3, we showed that K must also be positive definite. Therefore all of
its diagonal elements are positive [56]. Since K evidently has units of energy-times-length-
squared, we may write

K = kBT




λ2
1

. . .

λ2
d




for some positive lengths λ1, . . . , λd in the rotated coordinate system discussed above.

Finally, it was shown in § 2.3.2 that in one dimension, K divided by a typical energy
gives the square of the characteristic width of interphase boundaries. If we assume that kBT
is a typical energy scale in our problem, then in fact λi must be a characteristic interphase
width in the i-direction. It is therefore natural to scale lengths in the i-direction by λi.

After rotating the axes, rescaling the lengths by λi, and rescaling energies by kBT , we
are left with a non-dimensional gradient penalty tensor which is just equal to the identity
matrix. In particular, the diffusional chemical potential is simply

µ̃ = g̃L − g̃F + ã(1 − 2c) + log

(
c

1 − c

)
− ∇̃2c

where tildes denote non-dimensionalized quantities.

2.5.2 Intercalant and substrate chemical potentials

As in our LiFePO4/FePO4 example above, it is frequently the case that vacancies and oc-
cupied sites are distinct, well-defined chemical species. It is then reasonable to split G into
two partial Gibbs free energies, one for each individual species. These would then be the
chemical potentials needed, for example, to model reaction rates.

Let nL be the concentration (in molecules per unit volume) of the diffusing species, and
similarly define the concentration nF of the vacancies. Then in terms of the variables we
have been using,

ρ = nL + nF and c =
nL

nL + nF

.
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The free energy is then

G =

∫

V

{
ghom(nL, nF ) +

1

2
(nL + nF )

[
∇

(
nL

nL + nF

)]T

· K ·
[
∇

(
nL

nL + nF

)]}
dV

and the chemical potentials of L and F—µL and µF —are given by the variational derivatives
of G with respect to nL and nF .

The calculations above are straightforward but tedious—especially if the results are to be
translated back to the original variables c and ρ. Identities such as the following are helpful:

∂

∂nL

f(c, ρ) =

(
1 − c

ρ

)
∂f

∂c
+

∂f

∂ρ
for any function f ,

∂

∂nF

f(c, ρ) =

(
− c

ρ

)
∂f

∂c
+

∂f

∂ρ
for any function f ,

∇c =
1 − c

ρ
∇nL − c

ρ
∇nF ,

∂

∂nL

(∇c) = −1

ρ
∇c − 1 − c

ρ2
∇ρ ,

∂

∂nF

(∇c) = −1

ρ
∇c +

c

ρ2
∇ρ .

The results are

µL = gL + a(1 − c)2 + kBT log(c) +
1

2
(∇c)T K(∇c) − (1 − c)∇ · (K∇c) (2.27)

µF = gF + ac2 + kBT log(1 − c) +
1

2
(∇c)T K(∇c) + c∇ · (K∇c) (2.28)

There are two thermodynamic identities that are satisfied by these quantities. First, note
that µL − µF = µ; this is as expected since the diffusional chemical potential is the energy
required to replace one vacancy with a single diffusing molecule. Second, nLµL + nF µF = g,
which in classical thermodynamics follows from extensivity assumptions and allows one to
prove the Gibbs-Duhem relation [41].
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Chapter 3

Reaction Rates

The thermodynamics of chemical reactions are reasonably simple, and the underlying prin-
ciples date back to Gibbs. The kinetics of chemical reactions, on the other hand, can be
extremely complicated, and even detailed, quantum-mechanical simulations frequently make
predictions which do not match experiments. To make matters worse, many introductory
textbooks state simplified rate laws without providing an underlying model.

The earliest theoretical work on reaction kinetics which is still generally accepted today
was done by van’t Hoff in 1884 [98] (who rediscovered ideas proposed earlier by Guldberg and
Waage) and Arrhenius in 1889 [7]. In the latter, rates laws for reactions in aqueous solutions
are written as products of the concentrations of the reactants, and it is argued that the
constant must be of the form Ae−q/kBT for some “activation” heat q. Though no indication
was given as to how q or A could be predicted, experiments have consistently validated that
the temperature dependence of most chemical reactions is of this Arrhenius form.

These problems were first solved by transition-state theory in nearly-simultaneous
papers by Eyring [39] and Evans and Polanyi [37] in 1935. This theory is based on modeling
the reaction pathway as a curve through an energy landscape. The activation energy above
is then explicitly quantified as the difference between the energy minimum occupied by the
reactants and the energy of the saddle point over which the reaction pathway must traverse
on its way to the products. In addition, the prefactor A is computed in terms of quantum
statistical mechanics.

In this Chapter, we provide a brief, elementary account of transition state theory. This
should be sufficient at least to motivate the rate laws employed throughout this thesis, and to
make it clear why a generalized Butler-Volmer equation is appropriate for electrode kinetics
in a phase-separating battery system.

In the spirit of Chapter 5, a better approach for us might be to use the theory of reaction
rates developed by Kramers in 1940 [62] based on Brownian motion over an energy barrier.
In addition to providing corrections to the predicted pre-exponential factor from transition-
state theory, Kramers’ theory would allow us to explicitly model the stochastic effects of
thermal noise on the reaction rates. For the sake of time and simplicity, however, we have
omitted such a treatment.
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3.1 Thermodynamics

For any chemical species S, we denote the concentration of S (in molecules of S per unit
volume) by [S]. We may then define a standard state ΘS for S at some fixed temperature
and pressure, with uniform concentrations of all species, and in particular with some fixed
concentration [S]Θ of S. Note that different species may have different standard states.

In its standard state, S will have some well-defined chemical potential µΘ
S . In general,

the instantaneous chemical potential of S will differ from its standard value, and we define
the activity aS of S by

µS − µΘ
S = kBT log aS , (3.1)

where kB is Boltzmann’s constant and T is the temperature.

Now consider the reversible reaction

c1R1 + · · · + cmRm ⇋ d1P1 + · · · + dnPn . (3.2)

The Gibbs free energy change resulting from a single, net forward reaction at constant
temperature and pressure is [41]

∆G =
n∑

j=1

djµPj
−

m∑

i=1

ciµRi
.

Using (3.1), we may rewrite this expression as

∆G = ∆GΘ + kBT

∏n
j=1 a

dj

Pj∏m
i=1 aci

Ri

,

where we have define the standard Gibbs free energy change

∆GΘ ≡
n∑

j=1

djµ
Θ
Pj

−
m∑

i=1

cmµΘ
Ri

.

If the system in which our reaction is taking place is at equilibrium, then we must have
∆G = 0 (since the system must be at a local free energy minimum). If we define the constant
Keq by

Keq ≡ e−∆GΘ/kBT , (3.3)

then the equilibrium condition ∆G = 0 is equivalent to

Keq =

∏n
j=1 a

dj

Pj∏m
i=1 aci

Ri

, (3.4)

where it must be emphasized that these are all equilibrium activities. Equation 3.4 is a
statement of the equilibrium Law of Mass Action, i.e. that the quotient of the equilibrium
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activities is a function only of temperature. We therefore call Keq the equilibrium constant
for the reaction (3.2), though it must be kept in mind that it depends on our arbitrary
definitions of the standard states.

If any of our species are electrically charged, then each µS must be reinterpreted as an
electrochemical potential, necessitating a bit more bookkeeping. We will define all of our
standard states to be at 0 electrical potential, and we leave all activities unchanged. Thus,
if S has charge zSe (where e ≈ 1.602 × 10−19 C is the charge on a proton) and it feels the
(mean-field) electrical potential φS, then (3.1) becomes

µS = µΘ
S + zSeφS + kBT log aS . (3.1′)

It is frequently the case that the reaction occurs across a phase boundary around which
there is a very sharp change in electrical potential. We designate one phase π1 and the
other π2; assume the phases are at uniform electrical potentials φ1 and φ2, respectively;
and assume that every reactant and product feels one of these two (mean-field) electrical
potentials. Denote by q the net charge transfer from π1 to π2 during one occurrence of the
forward reaction from (3.2), and define ∆φ ≡ φ2 − φ1. Then the equilibrium Law of Mass
Action becomes ∏n

j=1 a
dj

Pj∏m
i=1 aci

Ri

= e−∆GΘ/kBT e−q∆φ/kBT . (3.4′)

As a “theorem”, the equilibrium Law of Mass Action is almost content free, depending
as it does on so many undefined concepts. It is only useful in conjunction with a model
for the free energy of the system which allows us to compute the activities. For instance,
an ideal solution is one in which the activity of species S equals its mole fraction xS

in its particular phase [84] (this only strictly holds for uniform systems of non-interacting
particles). In this case, the equilibrium constant may be written

Keq = C
[R1]

c1 . . . [Rm]cm

[P1]d1 . . . [Pn]dn
,

where the constant C is just a product of numbers of molecules in different phases and
volumes of different phases. This is often how the equilibrium Law of Mass Action is written,
though this expression is only valid for ideal solutions in equilibrium.

3.2 Elementary Reactions

Define the (for now assumed to be unidirectional) reaction

c1R1 + · · · + cmRm → products (3.5)

to be elementary if the reactants combine together in a single, discrete chemical event. It
is obviously unlikely that more than two reactants can participate in a single elementary
reaction, and it can be argued [71] that an elementary reaction with only one reactant is
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impossible, but we will retain the form above for generality. Note that most reactions are
not, as written, elementary; however, if such a reaction occurs, it must be through some
sequence of elementary steps.

Define the extent of the reaction ξ(t) to be the net number of times the reaction has
proceeded in the forward direction by time t, and define the instantaneous reaction rate
r ≡ dξ/dt. If the species Ri is not one of the products of the above reaction, it is not involved
in any other reactions, the volume V of the phase containing Ri remains constant, and the
number N of molecules in the phase containing Ri remains constant, then

d[Ri]

dt
= − ci

V
r and

dxRi

dt
= − ci

N
r .

We now wish to find a model for the reaction which will yield a rate law, i.e. an expression
for r. For now, we ignore the possibility of a reverse reaction, so in this section r will refer
only to the forward rate.

Transition state theory [71, 5] hypothesizes that:

• the reactants that go on to form the products do so only after passing through a
well-defined, short-lived activated complex, denoted ‡; and

• the reactants are in quasi-equilibrium with ‡.

We are therefore really studying the two-step process

c1R1 + · · · + cmRm ⇋ ‡ → products .

The rate of the reaction (3.5) is then

r = ν‡N‡

where N‡ is the number of activated complexes in the system and ν‡ is the inverse of the
average time required for an activated complex to decay into the products. We can obviously
rewrite this as

r = ν‡Nx‡

where x‡ is the mole fraction of the activated complex in its phase and N is the total number
of molecules in this phase.

The frequency factor ν‡ can be estimated using statistical mechanics. In the simplest
model in which decay involves only translation of the activated complex across a potential
energy peak, the result is ν‡ = kBT/h, where h is Planck’s constant. This is the most
typical value used. However, it is sometimes multiplied by a transmission coefficient κ
to account for complexes which decay back into reactants, as well as for quantum tunneling
of reactants without enough energy to overcome the classical energy barrier. Finally, there
are ab initio methods for accurately estimating this term, but they are too system-specific
to be of general use.
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We can easily compute x‡ from the assumptions above. Since the activated complex
decays very quickly, we assume that it is extremely diluted, and thus that it behaves ideally
(in the sense of §3.1): a‡ = x‡. Because ‡ is at equilibrium with the reactants, we may use
the equilibrium Law of Mass Action (3.4) to get another expression for the activity:

a‡ = K‡
eq

m∏

i=1

aci

Ri

where K‡
eq is the equilibrium constant for the reaction between the reactants and the activated

complex. Finally, we may use (3.3) to write

K‡
eq = e−∆‡GΘ/kBT ,

where ∆‡GΘ is the standard free energy change of activation. Putting all of this together
yields

r = k

m∏

i=1

aci

Ri
where

k = Ae−∆‡GΘ/kBT and frequently

A =
kBT

h
N .

(3.6)

The factor k is called the rate constant, and we have shown that in this model it is
only a function of the standard states of the reactants and the the activated complex. For
obvious reasons, A is called the pre-exponential factor; it is usually taken to be a constant
which is almost entirely independent of the system. Equation 3.6 is known as the Eyring-
Polanyi equation.

In terms of chemical potentials, the reaction rate may be written

r = A exp

(
m∑

i=1

ciµRi
− µΘ

‡

)
.

Note that it only depends on the standard chemical potential of the activated complex, and
is completely independent of the energies of the products.

To include charge transfer effects, we need only add the potential difference term from
(3.4′) to the K‡

eq used above. However, in this case we generally assume that, while the
reactants and products are in one of the bulk phases π1 or π2, the activated complex is very
close to the interface between the two phases. Thus it feels an intermediate (mean-field)
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electric field which we denote by φ1 + β∆φ for some β ∈ [0, 1]. Then (3.6) becomes

r = k
m∏

i=1

aci

Ri
where

k = Ae−∆‡GΘ/kBT e−qβ∆φ/kBT and frequently

A =
kBT

h
N ,

(3.6′)

where, again, we have used q to denote the net charge transfer from π1 to π2 during one
occurrence of reaction (3.5).

This description of the charge transfer effect differs from standard treatments [77, 11, 9],
but is a bit more rigorous and easy to understand. The fraction β is characteristic of the
reaction, and is called the symmetry factor. It has been found experimentally to be close
to 1/2 for many different reactions, and is often taken to equal 1/2 for analytical work.
Finally, note that an elementary reaction can probably involve at most one charge transfer,
and in typical applications that charge is an electron.

3.3 Multi-Step Reactions

As mentioned above, most reactions are not elementary, but rather occur through several
elementary steps which may be taking place in serial or in parallel. In principle, each step
can be described by a rate law as in §3.2, and the resulting coupled ODEs may be solved to
find the individual rates of creation or depletion. This program has several shortcomings,
though. First, there are frequently intermediate species created during early steps and
consumed during later steps, and we would require an activity model for each one. Second,
the equations would be highly coupled and non-linear (especially when non-ideal solution
models are needed), making them difficult to solve. Third, there are many parameters (in
particular, the free energies of the intermediate activated complexes) which are difficult to
estimate and almost impossible to measure in isolation in a real system.

For these and other reasons, we wish to formulate a simpler model for the rate of a multi-
step reaction. One way to do this is by making the same quasi-equilibrium assumption as
was employed in §3.2. In particular, we assume that all but one elementary step is so fast
that its reactants and products are in equilibrium, and that the remaining step (the so-called
rate-determining step, or rds) is sufficiently slow to control the overall rate of the reaction.

We illustrate the general procedure with the following three-step system:

R1 + R2 ⇋ I1 (3.7a)

R3 + I1 → I2 (3.7b)

R4 + I2 ⇋ P (3.7c)

where I1 and I2 are intermediates that do not interest us, {R1, R2, R3, R4} is the set of
reactants, and P is the product. We will assume that (3.7b) is the rate-determining step,
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and that (3.7a) and (3.7c) are fast enough to remain equilibrated. Then using the transition
state model (Equation 3.6′), the overall rate of the reaction is

r = Ae−∆‡GΘ
2 /kBT e−q2β2∆φ/kBT aR3

aI1 ,

where ∆‡GΘ
2 is the standard Gibbs free energy of activation of the rds, q2 is the charge

transferred across the interface during the rds, and β2 is the symmetry factor of the rds. We
do not know the activity for the intermediate species I1. However, since we are assuming
that (3.7a) is at equilibrium, we may use the equilibrium Law of Mass Action (3.4′) to write

aI1 = e−∆GΘ
1 /kBT e−q1∆φ/kBT aR1

aR2
,

where ∆GΘ
1 is the standard Gibbs free energy change for (3.7a) and q1 is the charge trans-

ferred across the interface during (3.7a). We can combine these two expressions to get

r = Ae−(∆GΘ
1 +∆‡GΘ

2 )/kBT e−(q1+q2β2)∆φ/kBT aR1
aR2

aR3
.

Note that nothing that happens after the rds enters into the rate expression, and in particular
that the rate is independent of the activity of the reactant R4. Also note that only the charge
transferred during the rds is multiplied by a corresponding symmetry factor.

This result can easily be generalized. First, it appears that we have restricted the analysis
to three elementary steps. However, all we have assumed about (3.7a) and (3.7c) is that
they each instantly equilibrate in response to changes driven by the rds. They need not be
elementary steps at all, nor will adding more of them (or removing either of them, obviously)
change the fact that the overall rate is exactly the forward rate of the rds. Further, as long
as all intermediates created before the rds are consumed by the rds, we can still cancel the
intermediates’ activities from the rate law by using the product of the equilibrium constants
of the pre-rds reactions. Finally, we can even account for some of the product species being
generated before the rds. However, our use of the pre-rds equilibrium constants means that
the forward rate law for our overall reaction will include some of the products’ activities.

If all of our assumptions are met, we get the following rate law:

r = Ae−∆‡GΘ
cum/kBT e−αe∆φ/kBT

m∏

i=1

a
c′i
Ri

/

n∏

j=1

a
d′j
Pj

. (3.8)

The activity exponents are primed to indicate that they are not the same as the stoichiometric
coefficients for the overall reaction. Instead, c′i is the net number of molecules of Ri consumed
up to and including the rds, and d′

j is the net number of molecules of Pj produced by this
point. Any of these coefficients can be 0 if the corresponding species has no net involvement
with the creation of the activated complex during the rds. We have defined

∆‡GΘ
cum ≡ ∆GΘ

1 + ∆GΘ
2 + · · · + ∆GΘ

rds−1 + ∆‡GΘ
rds

to be the sum of the standard Gibbs free energy differences for the pre-rds reactions, plus the
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standard Gibbs free energy of activation for the rds. Since there are no net intermediates,
this is equivalent to

∆‡GΘ
cum = µΘ

‡ +
n∑

j=1

d′
jµ

Θ
Pj

−
m∑

i=1

c′iµ
Θ
Ri

,

where again we must use the primed coefficients. Finally, we have defined the transfer co-
efficient

α ≡ 1

e
(q1 + q2 + · · · + qrds−1 + βrdsqrds)

to be the net number of protons (electrons are counted as negative protons) transferred
across the phase boundary before the rds, plus the usual symmetry factor for the rds.

The inclusion of product activities in a forward rate law may seem odd. In an elementary
reaction, increasing the concentration of a product decreases the overall reaction rate only by
increasing the reverse rate. In the general case, though, one of the product species might be
generated in a pre-rds reaction along with an intermediate needed by the rds. Then increasing
the concentration of the product will decrease the concentration of the intermediate, thus
slowing the forward rate of the rds.

Note that the transfer coefficient for a multi-step reaction is very different from the
symmetry factor for an elementary reaction. It is not constrained to the interval [0, 1], and
need not even be positive. However, it is the transfer coefficient rather than the symmetry
factor which can be measured experimentally.

3.4 Reverse Reactions

We have so far only considered the forward rates of our reactions. Many texts use the tran-
sition state model to simultaneously predict the forward and reverse rates for an elementary
reaction. This seems natural, especially since we would expect both directions to go through
the same activated state. However, the derivation of the rate law assumes that the reactants
are in equilibrium with the activated complex. If we apply this same model to the reverse
reaction, then we must assume that the products are also in equilibrium with the activated
complex. But then by the Zeroth Law of Thermodynamics [41], the reactants must be in
equilibrium with the products. We would thus only be predicting the equilibrium rate laws,
and we would have no way to extrapolate to any out-of-equilibrium setting. One fix is to
posit the existence of two activated complexes—one in equilibrium with the reactants and
the other in equilibrium with the products—but then we would need to know the energy
difference between these two complexes.

Regardless of the mechanism, we will assume that a rate law of the form (3.6′) exists—
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even out of equilibrium—for the forward and backward directions:

rf = kf

m∏

i=1

aci

Ri
where

kf = Afe
−∆‡GΘ

f
/kBT e−qf βf∆φ/kBT ; and

rb = kb

n∏

i=1

adi

Pi
where

kb = Abe
−∆‡GΘ

b
/kBT e−qbβb∆φ/kBT .

We must now relate the parameters for the reverse reaction to those for the forward reaction.

At equilibrium, obviously rf = rb. Combining this with the equilibrium Law of Mass
Action (3.4) yields

kf

kb

= Keq . (3.9)

This is called the kinetic Law of Mass Action, and is sometimes described as being
equivalent to the equilibrium Law of Mass Action as we have defined it. However, the
kinetic law is not fundamental, but is rather a trivial consequence of the forms of the rate
laws that we have assumed above. Expanding the kinetic law using (3.4′), we see that the
following must hold:

Af

Ab

e−(∆‡GΘ
f
−∆‡GΘ

b
)/kBT e−(qf βf−qbβb)∆φ/kBT = e−∆GΘ/kBT e−q∆φ/kBT .

Note that the q used on the right side of the above equation was defined to be the same
as qf . By conservation of charge, we must have qb = −qf = −q. But then if the above is to
hold for any value of ∆φ, we must have βf +βb = 1 (assuming only that the pre-exponential
factors are independent of ∆φ). This can be understood in the transition state model as
implying that the activated complexes in both directions share a common location along the
potential drop. We follow common convention and let β = βf be the symmetry factor for
the reaction, and write the potential term in kb as +q(1 − β).

Factoring out the potential terms leaves us with

Af

Ab

e−(∆‡GΘ
f
−∆‡GΘ

b
)/kBT = e−∆GΘ/kBT .

To make more progress, we must make an additional assumption: either that Af = Ab,
which is supported by the simple transition models described in §3.2; or that the forward
and backward reactions go through activated complexes with the same standard Gibbs free
energy, which is reasonable since one would think that the two activated complexes must
be identical. Either assumption in combination with the above equality implies the other,
and that ∆‡GΘ

f − ∆‡GΘ
b = ∆GΘ. Note that we could not have derived this just by mak-

ing a mathematical argument about the temperature dependence of the various factors in
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the equation above since there is an additional temperature dependence hidden in the free
energies.

Putting all of these assumptions and conclusions together yields the final form for the
rate laws of a bi-elementary, reversible reaction:

rf = kf

m∏

i=1

aci

Ri
where (3.10a)

kf = Ae−∆‡GΘ
f

/kBT e−qβ∆φ/kBT ; (3.10b)

rb = kb

n∏

i=1

adi

Pi
where (3.10c)

kb = Ae−∆‡GΘ
b

/kBT e+q(1−β)∆φ/kBT ; (3.10d)

∆GΘ = ∆‡GΘ
f − ∆‡GΘ

b ; and frequently (3.10e)

A =
kBT

h
N . (3.10f)

By expanding the activities using (3.1′), we see that the following holds, in or out of
equilibrium:

rf

rb

= exp

(
1

kBT

m∑

i=1

ciµRi
− 1

kBT

n∑

j=1

djµPj

)
= e−∆G/kBT , (3.11)

where the µ’s are electrochemical potentials, and ∆G is the free energy difference between
the products and the reactants (including mean-field electrical potential differences). Note
that these are all energies of the system in its current state, not the standard state. This
is known as de Donder’s equation. Again, this is not a fundamental law (at least as we
have derived it), but rather a consequence of the assumptions made in producing the rate
laws above. Also, note that the net reaction rate depends exponentially on the driving force,
so the standard linear approximations in non-equilibrium thermodynamics [26] are wildly
inaccurate.

Finally, note that we may use the elementary reverse rate law to derive a reverse rate
law for our multi-step reaction from §3.3. Since we require slight changes in the notation,
we include the forward and reverse laws here:

rf = Ae−∆‡GΘ
cum,f

/kBT e−αf e∆φ/kBT

m∏

i=1

a
c′i
Ri

/
n∏

j=1

a
d′j
Pj

(3.12a)

rb = Ae−∆‡GΘ
cum,b

/kBT e+αbe∆φ/kBT

n∏

j=1

a
(dj−d′j)

Pj
/

m∏

i=1

a
(ci−c′i)
Ri

. (3.12b)

The forward rate law is the same as (3.8), though we must now differentiate the forward
transfer coefficient αf from the reverse transfer coefficient αb. By convention, we count
protons crossing the interface in the forward direction even for the reverse reaction rate.
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This explains the sign change in the electrical terms, and yields the relation

αf + αb = q/e , (3.12c)

where q is the net charge transferred across the interface during a single, complete instance
of the multi-step reaction in the forward direction. Finally, note that the multi-step rate
laws also satisfy de Donder’s equation.

3.5 Applications to Lithium Iron Phosphate

The intercalation reaction in LiFePO4 involves an electron transfer from carbon black and
a lithium transfer from the electrolyte, so is almost certainly not elementary. The three
obvious candidates for reaction pathways are

FePO4(crystal) + e−(carbon) → FePO−
4 (crystal) (3.13a)

FePO−
4 (crystal) + Li+(electrolyte) → LiFePO4(crystal) , (3.13b)

FePO4(crystal) + Li+(electrolyte) → LiFePO+
4 (crystal) (3.14a)

LiFePO+
4 (crystal) + e−(carbon) → LiFePO4(crystal) , (3.14b)

or

Li+(electrolyte) + e−(carbon) → Li(electrolyte) (3.15a)

FePO4(crystal) + Li(electrolyte) → LiFePO4(crystal) . (3.15b)

Pathway (3.13) seems the most plausible: the Fe3+ in FePO4 “wants” to get reduced,
and once it does so, the lithium ion would get pulled across the boundary to reestablish
charge neutrality. In contrast, it is harder to understand why the lithium would initiate the
intercalation in the other two pathways. Moreover, in any pathway, the rate-determining
step is almost certainly the lithium insertion since this probably must involve a significant
deformation of the crystal lattice. For completion and comparison, though, we will write
down the rate laws for all six possibilities.

First we must agree on conventions for the directions of the electrical potential differences.
If the carbon-crystal and electrolyte-crystal potential differences were the same, then because
an electron and a positively-charged lithium ion must both cross the crystal interface, we
would require αf + αb = 0. The three interfaces probably have different potential drops,
though, so we will approach the problem more generally. Denote the carbon phase by C,
the electrolyte phase by E, and the crystal phase by F (which stands for Fe). We use the
following notational pattern for the interphase data: the difference between the electrical
potential in the crystal and that in the electrolyte is written ∆E→F φ ≡ φF − φE, and the
symmetry factor for the lithium-ion insertion across this interface is written βE→F .
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The reaction rates for any case can be read off from (3.12). For path (3.13) with rds
(3.13a), we get

rf,(3.13),(3.13a) = Ae−∆‡GΘ
cum,f

/kBT e+eβC→F ∆C→F φ/kBT aFePO4
ae−

rb,(3.13),(3.13a) = Ae−∆‡GΘ
cum,b

/kBT e−e(1−βC→F )∆C→F φ/kBT e+e∆E→F φ/kBT aLiFePO4
/aLi+ .

For path (3.13) with rds (3.13b), we get

rf,(3.13),(3.13b) = Ae−∆‡GΘ
cum,f

/kBT e−eβE→F ∆E→F φ/kBT e+e∆C→F φ/kBT aFePO4
aLi+ae−

rb,(3.13),(3.13b) = Ae−∆‡GΘ
cum,b

/kBT e+e(1−βE→F )∆E→F φ/kBT aLiFePO4
.

For path (3.14) with rds (3.14a), we get

rf,(3.14),(3.14a) = Ae−∆‡GΘ
cum,f

/kBT e−eβE→F ∆E→F φ/kBT aFePO4
aLi+

rb,(3.14),(3.14a) = Ae−∆‡GΘ
cum,b

/kBT e+e(1−βE→F )∆E→F φ/kBT e−e∆C→F φ/kBT aLiFePO4
/ae− .

For path (3.14) with rds (3.14b), we get

rf,(3.14),(3.14b) = Ae−∆‡GΘ
cum,f

/kBT e+eβC→F ∆C→F φ/kBT e−e∆E→F φ/kBT aFePO4
aLi+ae−

rb,(3.14),(3.14b) = Ae−∆‡GΘ
cum,b

/kBT e−e(1−βC→F )∆C→F φ/kBT aLiFePO4
.

For path (3.15) with rds (3.15a), we get

rf,(3.15),(3.15a) = Ae−∆‡GΘ
cum,f

/kBT e+eβC→E∆C→Eφ/kBT aLi+ae−

rb,(3.15),(3.15a) = Ae−∆‡GΘ
cum,b

/kBT e−e(1−βC→E)∆C→Eφ/kBT aLiFePO4
/aFePO4

.

For path (3.15) with rds (3.15b), we get

rf,(3.15),(3.15b) = Ae−∆‡GΘ
cum,f

/kBT e+e∆C→Eφ/kBT aFePO4
aLi+ae−

rb,(3.15),(3.15b) = Ae−∆‡GΘ
cum,b

/kBT aLiFePO4
.

The ∆‡GΘ term must be interpreted differently in each case. Notice that only when the last
step is the rate-determining one do we get a forward rate proportional to the product of the
reactant activities and a reverse rate proportional only to the product activity. Also, note
that the rate laws for path (3.15) with rds (3.15a) only contain the LiFePO4 and FePO4

activities as ratios of one another. As will become clear later, this is highly desirable since it
would mean that we would only need the difference between the LiFePO4 and FePO4 chemical
potentials rather than needing them both individually. Unfortunately, this is probably the
least likely of the six mechanisms.

We now focus on pathway (3.13) with a fast electron transfer and slow lithium transfer.
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We can expand the activities using (3.1′) to get the following rate laws:

rf = Ae(µFePO4
+µ

Li+
+µ

e−
−µΘ

‡ )/kBT ee(1−βE→F )∆E→F φ/kBT ,

rb = Ae(µLiFePO4
−µΘ

‡ )/kBT ee(1−βE→F )∆E→F φ/kBT .

The fact that the electrical potential factors are identical may appear odd, but this is the
result of more electrical terms being hidden in the electrochemical potentials µLi+ and µe− .

Now we must find the chemical potentials. The lithium chemical potential requires an
energy model for the electrolyte and a solution to the transport equations between the anode
and the cathode. However, we might be able to consider it a constant during the intercalation
of a single crystal. Similarly, the electrochemical potential of the electrons requires knowledge
of the material properties of carbon black, but might also be considered a constant for our
purposes.

The only remaining question, then, is how to compute µFePO4
and µLiFePO4

. In the
variational setting, we may use the expressions (2.27) and (2.28). We non-dimensionalize
electrical potentials by kBT/e, energies by kBT , and time by

τ ≡
exp(µΘ

‡ )

A
.

Note that µΘ
‡ is a standard chemical potential, so is a constant. It certainly belongs in the

time unit since it has the same, exponential effect on both the forward and reverse reactions.
Finally, if we non-dimensionalize lengths using the gradient penalty tensor (as in § 2.5.1),
our rate laws may be written

r̃f = exp
[
(1 − βE→F )∆E→F φ̃

]

· exp

[
µ̃Li+ + µ̃e− + g̃F + ãc2 + log(1 − c) +

1

2

∥∥∥∇̃c
∥∥∥

2

+ c∇2c

] (3.16)

r̃b = exp
[
(1 − βE→F )∆E→F φ̃

]

· exp

[
g̃L + ã(1 − c)2 + log c +

1

2

∥∥∥∇̃c
∥∥∥

2

− (1 − c)∇2c

] (3.17)

where tildes denote non-dimensionalized quantities.
This is a very unusual reaction rate law. If we only had the constant and logarithmic

terms in the second exponentials, this would be of the Butler-Volmer form, and the rate
would mostly be driven by the interfacial potential differences. The quadratic terms (with
coefficient ã) in the exponentials are just the result of using concentrated solution theory
rather than dilute solution theory, but are still rarely included in reaction rates in textbooks.
Finally, the Laplacian terms in the exponential come from explicit modeling of the phase
separation in the bulk; their presence in the exponents of reaction rate laws appears to have
been unprecedented until recent work on LiFePO4 [90].
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Chapter 4

Finite Volume Methods Applied to
the Cahn-Hilliard Equation

There are many standard numerical techniques for solving partial differential equations.
However, they are not all suitable for every problem. For example, the Finite Difference
Method (FDM) is the simplest general scheme: function values are stored on a grid, and all
derivatives are approximated by local linear functions of these values. However, these are
typically low-order approximations, and when applied to conservation equations (like the
Cahn-Hilliard equation), global conservation is not guaranteed.

In contrast to finite difference methods, spectral methods have extremely high orders of
accuracy. In a finite domain with non-trivial boundary conditions (such as a flux condition
involving reaction rates), we cannot assume periodicity, and so cannot use Fourier series.
Chebyshev polynomials may be used instead, which might allow for enough accuracy to
overcome the lack of any conservation guarantees. However, in phase-separating systems,
there is a sharp interphase boundary near which any spectral method will still be susceptible
to the Gibbs phenomenon [95]. Overcoming this difficulty requires using more basis elements,
which quickly becomes computationally expensive.

For these reasons, we have chosen to use the Finite Volume Method (FVM), which we
now describe.

4.1 The Finite Volume Method

Suppose we have some scalar field c(x, t) which is locally conserved. If we can define flux
vectors J(x, t) for c, then we can usually derive a PDE for local conservation:

∂c

∂t
+ ∇ · J = 0 . (4.1)

This is done by integrating c over a control volume CV , and asserting that the only way this
total amount of c can change is by fluxes across the boundary of CV . We thus arrive at the
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integral equation
d

dt

∫

CV

c(x, t) dV +

∫

∂(CV )

n̂ · J(x, t) dA = 0 . (4.2)

The PDE is then derived by applying Stokes’ theorem to the surface integral and taking the
limit as CV shrinks to 0.

The cell-centered finite volume method (FVM) is a general numerical scheme for solving
conservative PDEs of the form (4.1) by taking (4.2) as the fundamental equation [66]. The
geometry of the problem is split into many small control volumes. For each cell Ci, the
average value of c,

c̄i(t) ≡
1

Vol(Ci)

∫

Ci

c(x, t) dV , (4.3)

is stored (as opposed to a point value of c as in the finite difference method). Then (4.2)
can be written exactly as

dc̄i

dt
= − 1

Vol(Ci)

∑

Ei,j∈∂Ci

Ji,j (4.4)

where Ji,j(t) is the total normal flux across one edge Ei,j of the boundary of Ci. In the
semi-discrete finite volume method, each Ji,j(t) is approximated in terms of the c̄i(t), and
then (4.4) is solved using the method of lines, i.e. by integrating this set of ODEs in time.

The finite volume method has several advantages over other numerical methods. First,
it is very easy and natural to incorporate boundary conditions for the flux, even for higher-
order problems. Second, the global conservation of c is numerically guaranteed. Indeed,
since for each edge only a single normal flux is computed, the flux from one cell into one of
its neighbors is exactly the negative of the flux into the neighbor from the first cell. Thus, the
only way that

∑
i c̄iVol(Ci) can change is by fluxes from the system boundaries or numerical

errors in the time-stepping.

A disadvantage of the finite volume method is that finding approximation formulas for
functions and their derivatives is more difficult than for finite difference methods [54]. The
reason is that the stored values c̄i are cell averages and the fluxes Ji,j are boundary totals; nei-
ther is a simple point value. Since the cell average is a second-order-accurate approximation
for the value of c at the center of the cell (regardless of its shape or size), standard second-
order finite difference formulas can often be used. However, care must still be exercised near
boundaries or for higher-order methods.

4.1.1 Accuracy

Suppose we wish to compute dc̄i/dt with a certain level of spatial accuracy. It might appear
from (4.4) that we would need to compute the Ji,j with more accuracy since we must divide
by Vol(Ci). For example, in one dimension the formula becomes dc̄i/dt = (Ji,2 − Ji,1)/∆x,
so if the Ji,j are O ((∆x)n) accurate, the division by ∆x appears to leave dc̄i/dt with only
O ((∆x)n−1) accuracy.

For any particular FVM problem, this obviously must be checked. However, dc̄i/dt will
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tend to have the same accuracy as the fluxes despite the division by Vol(Ci). To see this,
we again specialize to one dimension. If the Ji,j have order n accuracy, their error will be of
the form ej(∆x)n, where ej is some combination of values of c and its derivatives at the jth

boundary point. Thus the computed dc̄i/dt will have an error of the form (e2 − e1)(∆x)n−1.
However, e1 and e2 will usually be of the same functional form, just evaluated at points
that are ∆x apart. Therefore e2 − e1 will tend to be an O(∆x) quantity, and the computed
derivative will indeed have O ((∆x)n) accuracy.

This property will tend to fail near the boundaries as the forms for the ej will need to
change to take boundary conditions into account. Thus, even when the boundary fluxes
are all nth-order accurate, the fact that the error terms are of a different form will reduce
the accuracy of the time derivatives. This problem cannot be eliminated by using more
accurate flux computations near the boundaries. For example, if we employ no-flux boundary
conditions, then the J ’s at the boundaries are exact. Despite this, though, it is obvious from
(4.4) that the order-n accuracy of the other flux components will amount to an order-(n−1)
accuracy for the time derivatives. In general, the order of accuracy must drop near the
boundaries in finite volume methods.

4.1.2 Conservation during time-stepping

In diffusion problems, it is often advantageous to employ an implicit scheme for the time
integration. With such methods, the c̄i for the next time step satisfy some set of implicit
equations in terms of the c̄i from the current time step. These equations are generally not
solvable in closed form, especially when J is a non-linear function of the c̄i; we therefore
cannot expect for them to be solved exactly in numerical code. These errors are a potential
threat to the FVM guarantee that

∑
i c̄iVol(Ci) remains constant.

Conservation can still be maintained without having to solve the implicit equations ex-
actly. For example, constrained optimization tools may be used at every time step. However,
it is frequently the case that no extra work is needed. If we analytically compute the gra-
dients of our numerical equations as the difference of the gradients of the fluxes, and if a
Newton-Raphson method is employed to solve the time-stepping equations using these gra-
dients, then it can be shown that a sufficiently small time step will guarantee conservation
by the solver.

4.2 One-Dimensional Geometries

In one-dimensional geometries, the control volumes are line segments. Denote the coordi-
nates of their endpoints by x0, x1, . . . , xN (so the total system length is L ≡ xN − x0), the
coordinates of their midpoints by xi−1/2 ≡ 1

2
(xi−1 +xi), and their widths by ∆xi ≡ xi−xi−1.

The average values used by the finite volume method are given by

c̄i ≡
1

∆xi

∫ xi

xi−1

c(x) dx (4.3,1D)
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J0 J1 J2 J3 JN−1 JN

c̄1 c̄2 c̄3 c̄N
r r r

x0 x1 x2 x3 xN−1 xN

Figure 4-1: Schematic of the geometry for a one-dimensional finite volume method. The
average value of c(x) between xi−1 and xi is approximated by c̄i. The fluxes Ji are computed
at the points xi.

for i = 1, 2, . . . , N (see Fig. 4-1 for a schematic). An approximation Ji is computed for the
flux at each point xi, and the system of equations solved by the method of lines is then

dc̄i

dt
= − 1

∆xi

(Ji − Ji−1) . (4.4,1D)

4.2.1 General formulas

To proceed, we must be able to approximate c(x) and its derivatives at various points in
the system. Formulas can be derived by Taylor-expanding c(x) about the point of interest,
computing c̄i for nearby i in terms of this expansion, and then taking linear combinations of
these c̄i which yield the desired derivative of c(x) with some acceptable error. For reference,
we include several second-order-accurate examples in the case where the control volume
width is a constant denoted by h (see [54] for more general and higher-order examples).

Approximations at the midpoints of control volumes away from the system boundaries
are listed in Table 4.1. Approximations at the endpoints of control volumes away from the
system boundaries are listed in Table 4.2.

quantity of interest
coefficients

error
c̄j−2 c̄j−1 c̄j c̄j+1 c̄j+2

c(xj−1/2) 1 − 1

24
c(2)(xj−1/2)h

2 + O(h4)

c(1)(xj−1/2)
−1

2h

1

2h
− 5

24
c(3)(xj−1/2)h

2 + O(h4)

c(2)(xj−1/2)
1

h2

−2

h2

1

h2
−1

8
c(4)(xj−1/2)h

2 + O(h4)

c(3)(xj−1/2)
−1

2h3

2

2h3

−2

2h3

1

2h3
− 7

24
c(5)(xj−1/2)h

2 + O(h4)

Table 4.1: One-dimensional FVM approximations for point values and low-order derivatives
at cell midpoints in the bulk. Each row gives the coefficients of the linear approximation for
the quantity in the leftmost column.
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quantity of interest
coefficients

error
c̄j−1 c̄j c̄j+1 c̄j+2

c(xj)
1

2

1

2
−1

6
c(2)(xj)h

2 + O(h4)

c(1)(xj)
−1

h

1

h
− 1

12
c(3)(xj)h

2 + O(h4)

c(2)(xj)
1

2h2

−1

2h2

−1

2h2

1

2h2
−1

4
c(4)(xj)h

2 + O(h4)

c(3)(xj)
−1

h3

3

h3

−3

h3

1

h3
−1

6
c(5)(xj)h

2 + O(h4)

Table 4.2: One-dimensional FVM approximations for point values and low-order derivatives
at cell endpoints in the bulk. Each row gives the coefficients of the linear approximation for
the quantity in the leftmost column.

Near the system boundaries, many of these formulas cannot be applied because they
involve nonexistent average values (c̄0 or c̄N+1, for example). Less symmetric formulas
are therefore required. Moreover, we frequently need to incorporate boundary conditions
into our formulas, so the general equations given in [54] are not necessarily useful. Ta-
bles 4.3 and 4.4 list equations that are valid near the boundaries and which incorporate the
conditions c′(x0) = c′(xN) = 0; this is the one-dimensional variational boundary condition
(2.11) absent any concentration-dependence in the surface energy γ.

4.2.2 The Cahn-Hilliard equation

In one dimension, we may non-dimensionalize the Cahn-Hilliard equation by using the length
scale λ and the time scale λ2/D. Then the non-dimensional equation is given by

∂c

∂t
= −∂J

∂x

where the non-dimensional flux J is defined by

J = 2acc(1) − c(1)

1 − c
+ cc(3)

(see Eqs. 2.26). This is computed by using the formulas in Table 4.2 to approximate c, c(1),
and c(3) (though formulas from Tables 4.3 and 4.4 are needed near the boundaries). The
result is a second-order-accurate approximation for J and a symmetric, five-point stencil for
the dc̄i/dt. Further, numerical tests confirm that the corresponding approximation for the
time derivatives is also O(h2) (c.f. Fig. 4-2).
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quantity of interest
coefficients

error
c̄1 c̄2 c̄3 c̄4

c(x0) 1 −1

6
c(2)(x0)h

2 + O(h3)

c(1)(x0) 0

c(2)(x0)
−25

11h2

32

11h2

−7

11h2

17

44
c(4)(x0)h

2 + O(h3)

c(3)(x0)
30

5h3

−54

5h3

30

5h3

−6

5h3

151

150
c(5)(x0)h

2 + O(h3)

c(1)(x1/2)
−1

2h

1

2h
−1

6
c(3)(x1/2)h

2 + O(h3)

c(2)(x1/2)
−13

11h2

14

11h2

−1

11h2
− 3

88
c(4)(x1/2)h

2 + O(h3)

c(3)(x1/2)
85

20h3

−147

20h3

75

20h3

−13

20h3

203

600
c(5)(x1/2)h

2 + O(h3)

c(2)(x1)
−1

11h2

−4

11h2

5

11h2
− 9

44
c(4)(x1)h

2 + O(h3)

c(3)(x1)
25

10h3

−39

10h3

15

10h3

−1

10h3

−2

25
c(5)(x1)h

2 + O(h3)

c(3)(x3/2)
15

20h3

−9

20h3

−15

20h3

9

20h3
−149

600
c(5)(x3/2)h

2 + O(h3)

Table 4.3: One-dimensional FVM approximations for point values and low-order derivatives
near the left boundary of the system. Any quantity not listed in this table may be estimated
using the bulk formulas from Tables 4.1 and 4.2.
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quantity of interest
coefficients

error
c̄N−3 c̄N−2 c̄N−1 c̄N

c(xN) 1 −1

6
c(2)(xN)h2 + O(h3)

c(1)(xN) 0

c(2)(xN)
−7

11h2

32

11h2

−25

11h2

17

44
c(4)(xN)h2 + O(h3)

c(3)(xN)
6

5h3

−30

5h3

54

5h3

−30

5h3

151

150
c(5)(xN)h2 + O(h3)

c(1)(xN−1/2)
−1

2h

1

2h
−1

6
c(3)(xN−1/2)h

2 + O(h3)

c(2)(xN−1/2)
−1

11h2

14

11h2

−13

11h2
− 3

88
c(4)(xN−1/2)h

2 + O(h3)

c(3)(xN−1/2)
13

20h3

−75

20h3

147

20h3

−85

20h3

203

600
c(5)(xN−1/2)h

2 + O(h3)

c(2)(xN−1)
5

11h2

−4

11h2

−1

11h2
− 9

44
c(4)(xN−1)h

2 + O(h3)

c(3)(xN−1)
1

10h3

−15

10h3

39

10h3

−25

10h3
− 2

25
c(5)(xN−1)h

2 + O(h3)

c(3)(xN−3/2)
−9

20h3

15

20h3

9

20h3

−15

20h3
−149

600
c(5)(xN−3/2)h

2 + O(h3)

Table 4.4: One-dimensional FVM approximations for point values and low-order derivatives
near the right boundary of the system. Any quantity not listed in this table may be estimated
using the bulk formulas from Tables 4.1 and 4.2.
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Figure 4-2: The L1-error of our spatial approximation to ∂c/∂t in one dimension as a function
of h. Note that as h approaches and decreases past 10−3, we begin to lose accuracy due to
rounding errors.

4.3 Two-Dimensional Geometries

In two-dimensional geometries, the control volumes are allowed to be polygons with arbitrary
sizes and orientations. However, we will specialize to the case of rectilinear grids. As in
the one-dimensional case, we will label the x-coordinates of the control volume boundaries
x0, x1, . . . , xN (so the total system width is Lx ≡ xN − x0), the x-coordinates of the control
volume midpoints by xi−1/2 ≡ 1

2
(xi−1+xi), and the control volume widths by ∆xi ≡ xi−xi−1.

Similarly, we label the y-coordinates of the control volume boundaries y0, y1, . . . , yM (so the
total system height is Ly ≡ yM − y0), the y-coordinates of the control volume midpoints by
yi−1/2 ≡ 1

2
(yi−1 + yi), and the control volume heights by ∆yi ≡ yi − yi−1. The average values

used by the finite volume method are given by

c̄i,j ≡
1

∆xj∆yi

∫ yi

yi−1

∫ xj

xj−1

c(x, y) dx dy (4.3,2D)

for i = 1, 2, . . . ,M and j = 1, 2, . . . , N . Further, Jx,i,j is the total flux in the x-direction
across the line segment xj × [yi−1, yi], and Jy,i,j is the total flux in the y-direction across the
line segment [xj−1, xj]× yi (see Fig. 4-3 for a schematic). The system of equations solved by
the method of lines is then

dc̄i,j

dt
= − 1

∆xj∆yi

(Jx,i,j − Jx,i,j−1 + Jy,i,j − Jy,i−1,j) . (4.4,2D)
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c̄i+1,j−1
Jx,i+1,j−1 c̄i+1,j

Jx,i+1,j c̄i+1,j+1

yi Jy,i,j−1 Jy,i,j Jy,i,j+1

c̄i,j−1
Jx,i,j−1 c̄i,j

Jx,i,j c̄i,j+1

yi−1 Jy,i−1,j−1 Jy,i−1,j Jy,i−1,j+1

c̄i−1,j−1
Jx,i−1,j−1 c̄i−1,j

Jx,i−1,j c̄i−1,j+1

xj−1 xj

Figure 4-3: Schematic of the geometry for a two-dimensional finite volume method. The
average value of c(x, y) in the rectangular region [xj−1, xj]× [yi−1, yi] is approximated by c̄i,j.
The x-components of the fluxes Jx,i,j are computed along the vertical edges xj×(yi−1, yi), and
the y-components of the fluxes Jy,i,j are computed along the horizontal edges (xj−1, xj)× yi.
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4.3.1 General formulas

In more than one dimension, computing accurate total fluxes across a face of a control volume
given only cell averages is very difficult (at least when the flux is a non-linear function). If
only second-order accuracy is required, however, then each face’s flux total may be replaced
by the face’s area (in 2-D, this is just the edge length) times the point value of the flux at the
face’s center. This is because the point value at the facial center is a second-order-accurate
approximation for the facial average. We will therefore still focus on computing point values
of c(x, y) and its derivatives.

If we specialize to a grid with uniform x-spacing h and uniform y-spacing k, then all of
the formulas given in § 4.2.1 are valid with errors that are O(h2 +k2). Mixed derivatives can
also be derived from the 1-D equations. For example, away from the system boundaries we
have:

1

hk2

[
(c̄i+1,j+1 − 2c̄i,j+1 + c̄i−1,j+1) − (c̄i+1,j − 2c̄i,j + c̄i−1,j)

]

=
∂3u

∂x∂y2
(xj, yi−1/2) + O(h2 + k2)

(4.5a)

1

h2k

[
(c̄i+1,j+1 − 2c̄i+1,j + c̄i+1,j−1) − (c̄i,j+1 − 2c̄i,j + c̄i,j−1)

]

=
∂3u

∂x2∂y
(xj−1/2, yi) + O(h2 + k2)

(4.5b)

Boundary conditions must be incorporated near the system edges. If we assume a Neu-
mann condition n̂ · ∇c = 0 must hold (which is equivalent to the variational boundary
condition (2.11) if K is diagonal and γ is concentration-independent), then the resulting
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approximations are:

1

11hk2

[
(−13c̄1,j+1 + 14c̄2,j+1 − c̄3,j+1) − (−13c̄1,j + 14c̄2,j − c̄3,j)

]

=
∂3u

∂x∂y2
(xj, y1/2) + O(h2 + k2)

(4.5c)

1

11hk2

[
(−13c̄M,j+1 + 14c̄M−1,j+1 − c̄M−2,j+1) − (−13c̄M,j + 14c̄M−1,j − c̄M−2,j)

]

=
∂3u

∂x∂y2
(xj, yM−1/2) + O(h2 + k2)

(4.5d)

1

11h2k

[
(−13c̄i+1,1 + 14c̄i+1,2 − c̄i+1,3) − (−13c̄i,1 + 14c̄i,2 − c̄i,3)

]

=
∂3u

∂x2∂y
(x1/2, yi) + O(h2 + k2)

(4.5e)

1

11h2k

[
(−13c̄i+1,N + 14c̄i+1,N−1 − c̄i+1,N−2) − (−13c̄i,N + 14c̄i,N−1 − c̄i,N−2)

]

=
∂3u

∂x2∂y
(xN−1/2, yi) + O(h2 + k2)

(4.5f)

4.3.2 The Cahn-Hilliard equation

In two dimensions, there is no longer a single natural time or length scale, so we must
keep many of the constants in the problem. We will assume that the non-dimensionalized
diffusivity and gradient penalty tensors are constants of the form

D =

(
Dx 0
0 Dy

)
K =

(
λ2

x 0
0 λ2

y

)
.

Then the non-dimensional conservation equation is given by

∂c

∂t
= −∂Jx

∂x
− ∂Jy

∂y

where the non-dimensional flux J = (Jx, Jy) is defined by

Jx = Dx

[
2ac

∂c

∂x
− 1

1 − c

∂c

∂x
+ λ2

xc
∂3c

∂x3
+ λ2

yc
∂3c

∂x∂y2

]

Jy = Dy

[
2ac

∂c

∂y
− 1

1 − c

∂c

∂y
+ λ2

xc
∂3c

∂x2∂y
+ λ2

yc
∂3c

∂y3

]

(see Eqs. 2.26).
This is computed by using the equations from § 4.2.1 to compute the non-mixed deriva-

tives and those from § 4.3.1 to compute the mixed ones. The result is a second-order-accurate
approximation for J and a 13-point stencil for the dc̄i,j/dt (c.f. Fig. 4-4). Further, numerical
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tests confirm that the corresponding approximation for the time derivatives is also O(h2+k2)
(c.f. Fig. 4-5).

k

k k k

k k { k k

k k k

k

Figure 4-4: The 13-point stencil for our second-order-accurate, two-dimensional FVM scheme
for the Cahn-Hilliard equation. In computing an approximation for dc̄i,j/dt in the cell with
the black circle, only the c̄ values in the 13 cells with circles are used.
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Figure 4-5: The L1-error of our spatial approximation to ∂c/∂t in two dimensions as a
function of h(= k). Note that as h approaches and decreases past 10−3, we begin to lose
accuracy due to rounding errors.
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Chapter 5

Stochastic Phase-Field Models

In many physical systems, there are metastable states occupying local free energy minima
but separated from the global free energy minimum via a free energy barrier. The transi-
tion between these states is frequently driven by random thermal motions which are not
adequately described by macroscopic evolution equations. Even in cases in which thermal
motion is accounted for at some level by the evolution equations (for instance, a derivation
of the diffusion equation via Brownian motions), the macroscopic equations can typically be
proven to strictly reduce the free energy as a function of time. In all of these cases, having
a stochastic version of the deterministic equations can help us to understand the transitions
to equilibrium.

There are also other reasons to consider stochastic models. For instance, in large systems,
deterministic equations can safely ignore thermal noise effects. However, in small systems,
typical energy scales might now be on the order of the thermal energy kBT . In these cases,
the macroscopic, mean-field forces considered in the large systems are no longer the only
dominant forces. Just from a scaling perspective, we must now account for thermal noise;
since doing this exactly might still be prohibitive (our system is probably still large enough
to contain many, many atoms), a stochastic approach is useful.

There seem to be two general techniques for understanding physical systems with (Gaus-
sian white) noise: the stochastic-differential-equation approach based on the Langevin equa-
tion and the probability-density-function approach based on the Fokker-Planck equation.
While some authors have argued that only the former [24] or the latter [87] is necessary,
both are very useful.

Stochastic models are most frequently used for Brownian motion, so the equations de-
scribe the dynamics of systems with a small number of degrees of freedom. We wish to extend
the analysis to systems in which a field—rather than just a particle—evolves stochastically.
At least in the Cahn-Hilliard setting, this was first done using a Langevin approach by Cook
[25] and using a Fokker-Planck approach by Langer [64].

The so-called Cahn-Hilliard-Cook equation is almost universally written as

∂c

∂t
= M∇2 δF

δc
+ η
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where F is a free energy functional. The stochastic noise η is Gaussian with 0 mean and
variance

〈η(x, t)η(x′, t′)〉 = 2kBTM∇2δ(x − x′)δ(t − t′)

(N.B. c-independent mobility is assumed here). It is usually pointed out that this is equiva-
lent to Langer’s Fokker-Planck equation

∂ρ

∂t
= −

∫

V

δJ

δc
dV ,

where the probability flux is given by

J = M∇2

[
δF

δc
ρ + kBT

δρ

δc

]
.

These equations can be very difficult to understand and use. First, what does it mean for
a random variable to have variance equal to the second derivative of the delta function, and
how can this be simulated numerically? Second, how do you solve the Fokker-Planck equation
with a continuum of variables? Third, how do you derive these, prove their equivalence, or
extend the equations to different settings (c-dependent mobilities, for example)?

There are very few good reference for this material. The Cahn-Hilliard-Cook equation is
frequently used, but only in the form above, and derivations are never included. Moreover,
most authors only work with the Fourier transform of the equation (by converting ∇2δ to
−k2). Many works cite the famous review article by Hohenberg and Halperin [50], but this
paper focuses on applications to critical phenomena, and does not give derivations. Indeed,
there are many papers which refer readers interested in derivations to other works which
themselves include no derivations.

In this Chapter, we will explain the Langevin and Fokker-Planck approaches to stochastic
fields in a way that is easily generalized and implemented numerically. The only prerequisite
is an understanding of their finite-dimensional versions.

5.1 Stochastic Variables

We will always use Greek letters for stochastic variables and functions, and English letters
for deterministic ones. Excellent general references for this material include [20] and [97].

5.1.1 Multivariate Fokker-Planck Equation

The Fokker-Planck equation is an exact PDE for the probability density function of a Markov
process with Gaussian, δ-correlated noise [87]. We denote by the vector x a single point in
phase space, and by ρ(x, t) the probability density function of our system. Its evolution is
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governed by the conservation equation

∂ρ

∂t
= −

∑

i

∂Ji

∂xi

(5.1a)

where the “probability flux” J is a vector whose ith component is

Ji(x, t) = D
(1)
i (x, t)ρ(x, t) −

∑

j

∂

∂xj

[
D

(2)
ij (x, t)ρ(x, t)

]
. (5.1b)

The D
(1)
i are called the drift coefficients, and the D

(2)
ij are called the diffusion coefficients.

They are defined by

D
(1)
i (x, t) = lim

τ→0

〈∆xi〉
τ

= lim
τ→0

1

τ

∫
(x′

i − xi)P (x′, t + τ |x, t) dx′ (5.1c)

D
(2)
ij (x, t) = lim

τ→0

〈(∆xi)(∆xj)〉
2τ

= lim
τ→0

1

2τ

∫
(x′

i − xi)(x
′
j − xj)P (x′, t + τ |x, t) dx′ (5.1d)

where P is the transition probability function.

5.1.2 Multivariate Langevin Equation

The Langevin equation is a stochastic ODE for the time evolution of a set of random variable
through phase space [24]. For any vector ξ = ξ(t) of stochastic variables, the Langevin
equation is given by

ξ̇i = hi(ξ, t) + ηi(ξ, t) (5.2a)

where the hi are deterministic functions and the ηi are the stochastic noise terms. The most
commonly-assumed form for the noise is

ηi(ξ, t) =
∑

j

gij(ξ, t)Γj(t) (5.2b)

where the gij are deterministic functions and each Γj is a Gaussian white noise satisfying

〈Γj(t)〉 = 0 (5.2c)

〈Γj(t)Γk(t
′)〉 = 2bjkδ(t − t′) (5.2d)

(this is a slight generalization of the equations discussed in [24]). The bjk are real numbers
giving the correlations between the different Γi’s, and are typically equal to the Kronecker
delta function. The factor of 2 is a convenience which obviates extra factors later.

The Gaussian white noises used above are the “derivatives” of Wiener processes. To see
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this, note that

Wi(t) ≡
∫ t

0

Γi(t
′) dt′

is Gaussian with 0-mean and variance equal to 2biit. Note, however, that the Wiener process
is differentiable with probability 0 [58], which explains the presence of the delta function in
(5.2d). We therefore must interpret (5.2a) as an integral equation

ξi(t) − ξi(0) =

∫ t

0

hi(ξ(t′), t′) dt′ +
∑

j

∫ t

0

gij(ξ(t′), t′)dWi(t
′) .

For multiplicative noise—systems in which the gij are ξ-dependent—this integral is not
uniquely defined. The most common definitions are those of Itô and Stratonovich, but for
physical systems in which the white noise is taken as the limit of continuous noises with
finite correlation times that approach 0, we must use the Stratonovich integral [87].

The above equation is equivalent to a Fokker-Planck equation with parameters

D
(1)
i (ξ, t) = hi(ξ, t) [Itô] or (5.3a)

D
(1)
i (ξ, t) = hi(ξ, t) +

∑

j,k,l

bjlgkl(ξ, t)
∂

∂ξk

gij(ξ, t) [Stratonovich], and (5.3b)

D
(2)
ij (ξ, t) =

∑

k,l

bklgik(ξ, t)gjl(ξ, t) . (5.3c)

If we employ matrix notation (so g = (gij), b = (bij), etc.), then we get the following modified
Fokker-Planck probability flux for the Stratonovich interpretation of the Langevin equation:

J =
[
h − gb(∇ · g)T

]
ρ − gbgT

∇ρ (5.3d)

where ∇ · g is the row vector whose ith element is
∑

k
∂

∂ξ
k

gki.

The extra term in (5.3b) is usually called the Stratonovich drift or the spurious drift. In
either case, though, the expected value evolves according to

˙〈ξi〉 = Di(ξ, t) . (5.4)

Thus, when using the Stratonovich integral, one cannot just set h equal to the time derivative
of the deterministic system.

Finally, we include for future reference the exact form of the covariance matrix of the noise
terms, Σ(ξ, t, ξ′, t′) = (Σij) = (〈ηi(ξ, t)ηj(ξ

′, t′)〉). Regardless of the integral interpretation,
it is given by

Σ(ξ, t, ξ′, t′) = 2g(ξ, t)bg(ξ′, t′)T δ(t − t′) . (5.5)

76



5.1.3 Discrete Approximation of the Variational Derivative

Our goal in this Chapter is to add stochastic noise to the variational thermodynamic equa-
tions of Chapter 2 in a way that is easily discretized. We must therefore briefly discuss
discretizing the operations employed from the calculus of variations. In particular, given a
functional

F
[
c(x, t), t

]
=

∫

V

f
(
c(x, t),∇c(x, t),x, t

)
dV ,

we would like to compute a discrete approximation of the variational derivative

δF

δc
≡ ∂f

∂c
− ∇ · ∂f

∂∇c
.

For simplicity, we will only work out the 1-dimensional case.

We choose evenly-spaced points x1, . . . , xn in the region of interest, and we employ the
notation ci ≡ c(xi, t). Any linear approximation scheme for derivatives is given by a matrix
D = (Dij) such that

∂c

∂x
(xi, t) ≈

n∑

j=1

Dijcj .

Then the Riemann approximation for our integral gives us

F (c, t) ≈
n∑

i=1

f

(
ci,

n∑

j=1

Dijcj, xi, t

)
∆x ,

where we have defined ∆x ≡ xi − xi−1. Given this approximation, we may compute

1

∆x

∂F

∂ck

(c, t) =
∂f

∂c

(
ck,

n∑

j=1

Dkjcj, xk, t

)
+

n∑

i=1

Dik
∂f

∂c′

(
ci,

n∑

j=1

Dijcj, xi, t

)

where ∂f
∂c′

is the derivative of f with respect to ∂c
∂x

. If we assume that DT = −D (which
holds, for instance, in any centered-difference scheme, though care must be exercised near
the boundaries), then

1

∆x

∂F

∂ck

(c, t) =
∂f

∂c

(
ck,

n∑

j=1

Dkjcj, xk, t

)
−

n∑

i=1

Dki
∂f

∂c′

(
ci,

n∑

j=1

Dijcj, xi, t

)

≈ ∂f

∂c

∣∣∣∣
xk,t

− d

dx

∂f

∂c′

∣∣∣∣
xk,t

=
δF

δc
(xk, t) .
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Generalizing to full dimensionality, we get

δF

δc
(xk, t) ≈

1

∆V

∂F

∂ck

(c, t) (5.6)

where now ∆V is the volume of each element in our discretized space.

5.2 Stochastic Fields

We now begin with the continuum case. Suppose c(x, t) is a physical field whose deterministic
evolution is modeled by the equation

∂c

∂t
= L

[
δF

δc

]
(5.7)

for some functional F (typically a free energy) and some linear differential operator L. If
we wish to include the random effects of thermal noise, it might seem reasonable to consider
the Langevin-type equation

∂c

∂t
= L

[
δF

δc

]
+ η(c, x, t)

for some stochastic term η. However, keeping in mind Eq. 5.4, it is not clear that the
expected value of the stochastic field would evolve according to (5.7), nor is it obvious how
to choose a noise term.

5.2.1 Discrete Approximation

We will overcome these difficulties by first discretizing our mean-field equation and then
adding noise. We begin by choosing a discrete set of points {x1, . . . , xn} in space; each
“point” may be a vector, depending on the dimensionality of the underlying space. We then
store an approximation ci(t) ≈ c(xi, t) for the field only at these points, and denote by c the
vector (c1, . . . , cn). We then assume our discrete, deterministic field evolves according to

∂ci

∂t
=

∑

j

Lij(c, t) · 1

∆V

∂F (c, t)

∂cj

(5.8)

(note the use of Eq. 5.6). Our differential operator L is now approximated by the matrix
L = (Lij); it may depend explicitly on the field c, time t, and space (via i and j).

Now, to extend our deterministic equation to a stochastic one, we assume that our dis-
crete, noisy field will evolve according to the Langevin equation (5.2). In order to recover
the deterministic behavior (5.8) as the expected value of the stochastic behavior under the
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Stratonovich interpretation, we must choose the Langevin parameters according to (5.4)

h − gb(∇ · g)T +
[
∇ · (gbT gT )

]T
=

1

∆V
L∇F (5.9)

(note that we have rewritten the derivative term in Eq. 5.3b).
We now have a Langevin equation from which we can recover our mean-field behavior

in the average sense. We have not, however, fully determined the noise covariances. To do
this, we make the additional assumption that

ρ(c, t) = Ae−F (c,t)/kBT

is a stationary distribution for our system, i.e. that the Fokker-Planck probability flux is
identically 0 for this ρ. Here kB is Boltzmann’s constant, T is the temperature, and A is
just a normalization constant. This can be understood from a canonical-ensemble point of
view if we take F to be a course-grained free energy (c.f. [64] and [50]).

Substituting this into (5.3d) and using (5.9), we get the new requirement

{
L +

∆V

kBT
gbgT

}
∇F =

[
∇ · (gbT gT )

]T
∆V (5.10)

This is called the fluctuation-dissipation theorem for our system; it specifies a constraint on
the noise g as a function of the generalized Onsager coefficients L.

Since our space is discretized into n discrete points, there are 2n2 +n unknown functions
between the vector h and the matrices g and b. Our requirements (5.9) and (5.10) only give
2n constraints. If c is a conserved quantity, we might also require

∑

i,j

gij = 0 (5.11)

in which case the stochastic noise will be strictly conservative. This provides only one
additional constraint, though, and there are no others that we could generally impose here
(though see the next section). We must therefore accept that the stochastic equations as
derived here are not uniquely defined.

5.2.2 Generalization

We have said nothing about the identity of our c field. We could, for instance, be interested
in adding stochastic noise to deterministic equations for the evolution of concentration fields
[16], elastic strain [65], or crystallinity [94]. More generally, it could be a combination of
several different fields. In this case, our free energy depends on the fields ψ1, ψ2, . . . , ψm, and
our equations of motion are of the form

∂ψi

∂t
=

∑

j

Lij

[
δF

δψj

]
.
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Now we have a matrix of linear differential operators Lij (hopefully making it more clear
why we have been calling our L a generalized Onsager coefficient). Even in this general
situation, we can still apply the above recipe exactly to get a discrete Langevin equation for
a noisy version of our system.

5.2.3 Continuum Equations

As mentioned in the introduction, the continuum versions of the evolution equations are
difficult to use and interpret. For completeness, however, we will demonstrate their derivation
as the continuum limits of the discrete systems discussed in § 5.2.1.

We begin by making additional assumptions about the noise terms:

gb(∇ · g)T = 0 (5.12)

∇ · (gbT gT ) = 0 (5.13)

gbgT = −
(

kBT

∆V

)
L (5.14)

(note that (5.14) is not quite a consequence of (5.13) and (5.10)). If L were c-independent,
it would be reasonable to assume that g and b would be constant, in which case (5.12) and
(5.13) would be trivial. In the general setting, though, these cannot be rigorously justified
without a more detailed model of the noise. In particular, note that (5.13) and (5.14) together
impose an additional requirement on L (namely that ∇ · LT = 0); this matrix is given to
us via the mean-field, deterministic dynamics, so we are not at liberty to change it. With
these assumptions, however, (5.10) is satisfied identically, and (5.9) holds simply by letting
h equal the right side of the deterministic equation.

The resulting Langevin equation in vector form is given by

ċ(t) = L(c, t) · 1

∆V
∇F (c, t) + η(c, t)

and the covariance of the noise vector (c.f. Eq. 5.5) is given by

〈ηi(c, t)ηj(c, t′)〉 = −2kBTδ(t − t′) · Lij(c, t)
1

∆V
.

In the continuum limit, we then get

∂c(x, t)

∂t
= L(c,x, t)

[
δF

δc
(x, t)

]
+ η(c, x, t) (5.15a)

〈η(c, x, t)η(c, x′, t′)〉 = −2kBTδ(t − t′)L(c,x, t)
[
δ(x − x′)

]
. (5.15b)

When L = ∇2, this is the Cahn-Hilliard-Cook equation (though it was not written quite
like this in Cook’s original paper [25]). This is also how Model B dynamics are described by
Hohenberg and Halperin [50]; their Model A dynamics are also a special case of the above
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with L equal to a constant.

The resulting modified Fokker-Planck probability flux in vector form is given by

J(c, t) = L(c, t)

[
ρ(c, t)

1

∆V
∇F (c, t) + kBT

1

∆V
∇ρ(c, t)

]
.

Using the Riemann-sum approximation for integrals along with (5.6), we get the following
in the continuum limit:

∂ρ(c, t)

∂t
= −

∫
δ

δc

(
L(c,x, t)

[
δF

δc
(x, t)ρ(c, t) + kBT

δρ

δc
(x, t)

])
dx . (5.16)

The special case for L = ∇2 was more rigorously derived by Langer [64].

Even aside from being able to derive the continuum equations, the above assumptions
yield another nice property. The Stratonovich drift vanishes, so the Stratonovich and Itô
integrals coincide [87]. Therefore, despite the fact that we still may have multiplicative noise
(indeed, see § 5.2.4 for an example in which the assumptions above are satisfied even for
c-dependent gij), we may use the Itô integral for simulations. In general, this will make the
numerics easier to implement.

5.2.4 Example

Suppose we wish to add stochastic noise to the 1-dimensional Cahn-Hilliard system (2.26)

µ =
1

ρ

δF

δc

J = −ρB(c, x)
∂µ

∂x
∂(ρc)

∂t
= −∂J

∂x

with (potentially c- and x-dependent) mobility B and constant ρ. Then our differential
operator may be written

L =
1

ρ

∂

∂x

[
B(c, x)

∂

∂x

]
.
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In the centered-difference finite volume method discretization assuming no-flux boundary
conditions, we get the approximation

L =
1

ρ(∆x)2




−B1−2 B1−2 0 · · · 0 0
B1−2 −(B1−2 + B2−3) B2−3 · · · 0 0

0
. . . . . . . . . 0 0

0 0
. . . . . . . . . 0

0 0 · · · B(n−2)−(n−1) −(B(n−2)−(n−1)) B(n−1)−n

0 0 · · · 0 B(n−1)−n −B(n−1)−n




.

As usual, ∆x denotes the (uniform) spacing between points. The quantity Bi−(i+1) is an
approximation for the function B(c, x) at the midpoint between xi and xi+1; for instance, if
B(c, x) = c D

kBT
for constant D, we would choose Bi−(i+1) = 1

2
(ci + ci+1)

D
kBT

.

Now we choose b = I = (δij) and

g =

√
kBT

ρ(∆x)3




0 −√
B1−2 0 · · · 0 0

0
√

B1−2 −√
B2−3 · · · 0 0

0
. . . . . . . . . 0 0

0 0
. . . . . . . . . 0

0 0 · · · 0
√

B(n−2)−(n−1) −
√

B(n−1)−n

0 0 · · · 0 0
√

B(n−1)−n




.

Then (5.14) holds identically. Further, if we add the additional requirement that the approx-
imation Bi−(i+1) is a symmetric function of ci and ci+1 (note that it may still have arbitrary
dependencies on the other c-components), then (5.12) and (5.13) also hold. We therefore get
a Langevin equation which satisfies our fluctuation-dissipation theorem; whose deterministic
part is identically equal to the right-hand side of the deterministic evolution equation; and
which may be simulated using the Itô integral.

Note that this is easily extended to finite volume methods for this same problem in higher
dimensions. In this case, we get a g matrix as above for each direction. The prefactor need
only be changed to

√
kBT/ρ(∆V )(∆x)2. Regardless of the dimensionality,

∑
i,j gij = 0, so

the noise is strictly conservative (c.f. Eq. 5.11).

We do have a fairly serious problem, though. Let B be a typical scale for the Bi−(i+1).

Then a typical value of gij is ∼
√

BkBT/ρ(∆V )(∆x)2. In simulations, we need the noise
terms to be very small during each time-step. If the length of a time step is denoted ∆t,
then we require √

BkBT

ρ

∆t

(∆V )(∆x)2
≪ 1 .

This is an extremely strict constraint, especially when the stability of the deterministic
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integration scheme may only require

BkBT
∆t

(∆x)2
< 1 .
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Chapter 6

Dynamical Regimes of the CHR
System

The partial differential equation discussed in § 2.5 is obviously mathematically complex: it
is a nonlinear, 4th-order equation with non-linear, 3rd-order boundary conditions. Conse-
quently, there is little hope for analytic results. Unfortunately, the equation is also difficult
to analyze physically. Though the microscopic energies are likely all on the scale of kBT ,
there are potentially six different length scales (each spatial direction has an associated
atomic-scale λi and a particle-scale Li) and nine different time scales (diffusion in each di-
rection across phase boundary widths, diffusion in each direction across the entire particle,
and reaction time scales at each crystal face) in the model.

For easy reference, we define a CHR (Cahn-Hilliard with Reaction boundary conditions)
system to be one for which a non-dimensional concentration field c = c(x, t) satisfies the
following PDE:

µ = a(1 − 2c) + kBT log

(
c

1 − c

)
− ∇ · (K∇c) (6.1a)

J = −ρcD∇(µ/kBT ) (6.1b)

∂c

∂t
= −1

ρ
∇ · J = ∇ · (cD∇µ/kBT ) (6.1c)

with boundary conditions

n̂ · (K∇c) = 0 (6.1d)

n̂ · J = −ρsR . (6.1e)

As used here, R is the net rate at which material enters the system via boundary reactions.
We do not specify its exact form, but note that it will generally depend on the local con-
centration and chemical potential. We will assume that the diffusivity and gradient-penalty
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tensors are both diagonal and constant:

D =




Dx

Dy

Dz


 and K = kBT




λ2
x

λ2
y

λ2
z


 .

Finally, we denote by V the region of space occupied by our crystal. For simplicity, we will
assume that V is the rectangular parallelepiped [0, Lx] × [0, Ly] × [0, Lz].

We have already shown (see § 2.5.1) that the natural length scale over which the concen-
tration and chemical potential fields vary in the i-direction is given by λi. The natural time
scale for diffusive fluxes in the i-direction is therefore τD

i ≡ λ2
i /Di. However, the boundary

reactions can occur at much different time scales, which we denote by τR
i . This disparity is

quantified by the non-dimensional Damköhler numbers

Dai ≡
τD
i

τR
i

. (6.2)

Clearly the bulk diffusion equation (6.1c) can be neatly non-dimensionalized using only
the time scales τD

i , and similarly the boundary reaction rates should be non-dimensionalized
using only the time scales τR

i . Thus the Damköhler numbers only impact the CHR dynamics
through the reaction boundary condition (6.1e). Indeed, at any crystal-electrolyte interface
perpendicular to ê(i), combining the above non-dimensionalizations yields

J̃i = −DaiR̃i

where the non-dimensionalized quantities (i.e. those with tildes) are expected to be O(1). In
this Chapter, we discuss the dynamical regimes of the model in various limits for the Dai.

6.1 The One-Dimensional BTL Regime

In the bulk-transport-limited (BTL) regime, the Damköhler numbers are large. If J̃i = O(1)

and Dai ≫ 1, then we must have R̃i ≪ 1. In the BTL limit Dai → ∞, the reaction rates
must be identically 0. A more physically intuitive argument is that if the reactions are
infinitely fast, then they must equilibrate infinitely quickly. Still another way to understand
this regime is by studying it as a perturbation expansion in Da−1

i , in which case the zeroth-

order system is just R̃i = 0. Regardless, if we view the system at the long (diffusive) time
scale, the zeroth-order solution for the boundaries is complete and instantaneous equilibrium.

In any thermodynamically-consistent model for the boundary reactions, Ri = 0 must
correspond to an equality between the chemical potentials of the reactants and those of the
products in the reaction [41]. At the bulk-diffusive time scale, then, the BTL limit of the
CHR system may be simulated by replacing the reaction-flux boundary condition (6.1e) with
a boundary condition equating chemical potentials across the crystal-electrolyte interface.

We therefore see that the BTL limit of the CHR equations is just a Cahn-Hilliard sys-
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Figure 6-1: Normalized total concentration of an ion channel being filled via BTL dynamics.

tem with a fixed-chemical-potential boundary condition. The dynamics of the system are
governed by how quickly the boundary chemical potential can be diffused across the bulk—
which obviously must occur at the bulk-diffusive time scale. This is analogous to a standard
diffusion problem in which the concentrations at the boundaries are held fixed.

Two additional points are worth noting. First, even though we have replaced the reaction
boundary condition, there is still (in general) a net flux of intercalant across the crystal-
electrolyte interface. In the BTL limit, however, these transfers occur instantaneously as
needed to maintain the chemical-potential boundary condition. Second, in phase-separating
systems, the boundary between high- and low-concentration phases in the bulk will move
diffusively.

Figure 6-1 shows a plot of the total concentration of a long ion channel being filled via
BTL dynamics. For most of the simulation, the total concentration scales like the square
root of time (the actual exponent computed using a two-parameter, least-squares fit on a
log-log plot was ≈ 0.477). Phase separation was achieved early in the simulation, and did
not disappear until near the end; throughout the phase-separated period, the interphase
boundary moved with a velocity that scaled like the inverse square root of time. This is all
diffusive behavior.

6.2 The One-Dimensional SRL Regime

In the surface-reaction-limited (SRL) regime, the Damköhler numbers are small. If R̃i =

O(1) and Dai ≪ 1, then we must have J̃i ≪ 1. In the SRL limit Dai → 0, we must have

J̃i = 0. A more physically intuitive argument is that if the bulk diffusivities are infinitely
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Figure 6-2: Normalized total concentration of an ion channel being filled via SRL dynamics.

small, then the bulk must equilibrate infinitely quickly. Still another way to understand this
regime is by studying it as a perturbation expansion in Dai, in which case the zeroth-order
system is just a Cahn-Hilliard system with no-flux conditions at the boundary. Regardless,
if we view the system at the long (reaction) time scale, the zeroth-order solution for the bulk
is complete and instantaneous relaxation.

The SRL regime was described in [90] as follows:

In this regime, bulk transport is fast enough [to] equilibrate the concentration to
a nearly constant value c(t) across the material, which varies uniformly at the
slowest reaction time scale.

However, this is not correct: as discussed in § 2.3.2, bulk relaxation implies uniformity
of chemical potential, but for phase-separating systems this involves rather extreme non-
uniformities in concentration. In a phase-separating system, bulk equilibrium (or at least
bulk metastability) occurs for spatially-uniform concentration fields only when the overall
concentration is outside of the spinodal range. Indeed, inside the spinodal range, uniform
concentrations are not only non-equilibrium points, but are actually linearly unstable.

Figure 6-2 shows a plot of the total concentration of a long ion channel being filled via
SRL dynamics. Once phase separation was achieved (near the spinodal at total concentration
≈ 0.11), the total concentration scales linearly with time. Moreover, throughout this period,
the interphase boundary moved with almost constant velocity. A more careful treatment of
(6.1e) reveals that this velocity scales like (ρs/ρ)/τR

i (so it does not depend on λi).
We have therefore reached a very important conclusion: In a phase-separating system,

the interphase boundary will always move from the particle boundaries into the bulk at the
slowest time scale. In the BTL limit, the interphase boundary must diffuse away from the
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particle boundaries; in the SRL limit, the interphase boundary must be pushed away from
the particle boundaries via the reactions. We cannot conclude that there is any uniformity
in the concentration fields in any regime.

6.3 “The SRL Equation”

In [90], an equation was derived for the dynamics of LiFePO4 assuming extreme anisotropy
in the SRL limit. In particular, it was claimed that if Dax, Daz ≫ 1 ≫ Day, then the
concentration fields along the y-oriented channels would be uniform, so depth-averaging
should lead to the (non-dimensional) equation

∂c̄

∂ t̃
= R̃ (6.3)

where c̄ is the depth-averaged concentration field. Note that R̃ here represents only the
reactions occurring at the xz-faces.

There are multiple problems with this equation. Most importantly, the depth-averaging
operation is not valid in general. Mathematically, the authors interchanged the order of
the linear depth-averaging operation and the highly nonlinear operator R̃, which is rarely
justifiable. In this case, it could only be valid if the concentration field were indeed uniform
in the y-direction. However, as pointed out in § 2.3.2 and § 6.2, this is not true for phase-
separating systems (like LiFePO4) over most of the concentration range. Indeed, the SRL
regime only implies concentration uniformity outside of the miscibility gap; in particular, we
can only claim that the concentration remains uniform along these channels at all times if
the channels are so short that there is no spinodal or miscibility gap (see Chapter 8 or [13]).

Another problem with the derivation of this PDE in [90] is the claim that the Damköhler
numbers in the x- and z-directions are important. What is actually used in deriving the
equation, however, is that

τD
y ≪ τR

y ≪ τD,R
x,z

i.e. that diffusion in the y-direction is the fastest time scale in the problem, and diffusion
and reaction time scales for the x- and z-directions are very slow relative to the y-reactions.
It is therefore mixed Damköhler numbers which are relevant.

Finally, a major problem with the use of (6.3) (rather than with its derivation) in [90]
is that the original 4th-order equation has become a 2nd-order equation, but there is no
discussion of boundary conditions. Indeed, given the assumptions of the paper that Dax

and Daz are large, we should use the variational boundary condition (6.1d) and the fixed-
chemical-potential boundary condition discussed in §6.1. However, this would allow an influx
of intercalant at the xy- and yz-planes, which is clearly not what was intended in [90].

We provide here a detailed derivation of the “depth-averaged” equation used in [90],
along with a careful list of the assumptions needed for its validity. Define the depth-averaged
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concentration field

c̄(x, z, t) ≡ 1

Ly

∫ Ly

0

c(x, y′, z, t) dy′ . (6.4)

We wish to find a simplified version of the full CHR model in terms of this new variable.

6.3.1 Evolution equation

Clearly c̄(x, z, t) is the average concentration along the line {(x′, y′, z′) ∈ V |x′ = x, z′ = z}
at time t. Denote by Tǫ(x, z) the closed, rectangular parallelepiped of width ǫ centered on
this line, i.e.

Tǫ(x, z) ≡
{
(x′, y′, z′) ∈ V

∣∣ |x′ − x| ≤ ǫ/2, |z′ − z| ≤ ǫ/2
}

.

The integral form of the conservation law (6.1c) with this “tube” as a control volume is

d

dt

∫

Tǫ(x,z)

ρc(x′, y′, z′, t) dV = −
∮

∂Tǫ(x,z)

n̂ · J(x′, y′, z′, t) dA .

The surface integral above has six components: the x- and z-directed bulk fluxes through
the four sides of the tube, and the reaction fluxes through the top and bottom. Consider
first the x-directed bulk fluxes. If we denote the x-component of the flux vector by Jx, then
the total x-directed contribution to the surface integral may be estimated as follows:

−
∫ Ly

0

∫ z+ǫ/2

z−ǫ/2

Jx(x +
ǫ

2
, y′, z′, t) dz′ dy′ +

∫ Ly

0

∫ z+ǫ/2

z−ǫ/2

Jx(x − ǫ

2
, y′, z′, t) dz′ dy′

≈ −ǫ

∫ Ly

0

∫ z+ǫ/2

z−ǫ/2

∂

∂x
Jx(x, y′, z′, t) dz′ dy′

≈ −ǫ2

∫ Ly

0

∂

∂x
Jx(x, y′, z, t) dy′

= ǫ2ρDx

∫ Ly

0

∂

∂x

(
c
∂(µ/kBT )

∂x

)
dy′ .

The fields c(x, t) and µ(x, t)/kBT are both O(1) quantities that vary in the x-direction
over length scales comparable to λx. The absolute value of the x-component of the surface
integral will therefore have order of magnitude ǫ2ρDxLy/λ

2
x. The exact same argument can

be made for the z-component of the surface integral, whose order of magnitude is evidently
ǫ2ρDzLy/λ

2
z.

The y-component of the surface integral consists entirely of the boundary reactions at
the top and bottom of the particle. If Ry is a typical reaction rate over the top and bottom
squares of the tube (i.e. Tǫ(x, z) ∩ ∂V ), then the y-component of the surface integral is
approximately 2ǫ2ρsRy.

We will assume that the reaction rates dominate this surface integral. More precisely, we
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make the following

Assumption 1 (1D transport):
Dx

λ2
x

≪
(

ρs

ρLy

)
Ry and

Dz

λ2
z

≪
(

ρs

ρLy

)
Ry .

Then the bulk fluxes through the sides of the tube are negligible, and we are left only with
the reaction fluxes through the top and bottom.

We have already used the approximations

−
∫ x+ǫ/2

x−ǫ/2

∫ z+ǫ/2

z−ǫ/2

n̂ · J(x′, y = 0, z′, t) dz′ dx′ ≈ ǫ2ρsR(x, y = 0, z, t)

−
∫ x+ǫ/2

x−ǫ/2

∫ z+ǫ/2

z−ǫ/2

n̂ · J(x′, y = Ly, z
′, t) dz′ dx′ ≈ ǫ2ρsR(x, y = Ly, z, t)

where we have used the shorthand notation R(x, t) to mean R
(
x, c(x, t), µ(x, t)

)
. We may

also make the similar approximation

∫

Tǫ(x,z)

c(x′, y′, z′, t) dV ≈ ǫ2Ly · c̄(x, z, t) .

By canceling the common factor of ǫ2 and then taking the limit as ǫ → 0, we get the evolution
equation

∂c̄(x, z, t)

∂t
=

ρs

ρLy

[
R(x, y = 0, z, t) + R(x, y = Ly, z, t)

]
. (6.5)

Note that these reaction rates are still functions of c rather than of c̄, so we do not yet have
a closed PDE for the depth-averaged concentration.

6.3.2 Concentration field uniformity

In order to understand the bulk concentration field, we must non-dimensionalize the original
CHR equations using time scales appropriate for filling an entire ion channel. It is clear from
(6.5) that the natural time scale for the evolution of c̄ is TR ≡ (ρLy/ρs)R

−1
y , where Ry is

a typical value for R along the y = 0 and y = Ly boundaries of V . We non-dimensionalize
all lengths by Ly, and define the diffusive time scale TD ≡ L2

y/Dy and the ion channel
Damköhler number Da ≡ TD/TR. Then the y-component of the flux equation (6.1b) may
be written

Da · J̃y = −ρ̃c
∂µ̃

∂ỹ

where tildes denote non-dimensionalized quantities.

We now make the assumption used in [90] that we are in the surface-reaction-limited
regime:

Assumption 2 (SRL): Da ≪ 1
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(note that this is different from the SRL regime discussed in § 6.2). If we examine the
non-dimensional flux equation in the asymptotic limit Da → 0 (which is essentially just
the “long-time” limit for diffusion in the y-direction), we see that ∂µ̃/∂ỹ = 0. Note that
this does not immediately imply that ∂c/∂y = 0 because in a phase-separating material a
non-uniform concentration field can have a uniform chemical potential. Moreover, we cannot
make any equilibrium arguments here because µ̃ may still vary as a function of x and z.

By (6.1a),
∂µ̃

∂ỹ
= g̃′′

hom(c)
∂c

∂ỹ
− λ̃2

x

∂3c

∂x̃2∂ỹ
− λ̃2

y

∂3c

∂ỹ3
− λ̃2

z

∂3c

∂z̃2∂ỹ
.

We have seen that this entire expression must be 0 in the SRL regime, so we may write

∂3c

∂ỹ3
=

1

λ̃2
y

[
g̃′′
hom(c)

∂c

∂ỹ
− λ̃2

x

∂3c

∂x̃2∂ỹ
− λ̃2

z

∂3c

∂z̃2∂ỹ

]
.

Then if we make the “thin-slab” assumption

Assumption 3 (thin-slab): λ̃y ≫ 1

the above expression becomes simply ∂3c/∂ỹ3 = 0 in the asymptotic limit λ̃y → ∞.

We are therefore restricted to concentration fields whose y-dependence is at most quadratic.
However, the variational boundary condition (6.1d) may be written ∂c/∂y = 0 at y = 0 and
y = Ly. The only quadratic functions that can satisfy these Neumann conditions at the
boundaries are the constant functions. Given our assumptions, then, c can only be a func-
tion of x, z, and t, and in fact c̄(x, z, t) = c(x, y, z, t) ∀y. All functions which depend on c
can therefore be considered to be functions of c̄. In particular, our evolution equation (6.5) is
a closed equation for c̄ in the 1-dimensional transport, SRL, thin-slab regime. If the reaction
rate does not depend explicitly on position, then this equation is simply

∂c̄(x, z, t)

∂t
= 2

ρs

ρLy

R
(
c̄(x, z, t), µ̄(x, z, t)

)
(6.5′)

where we have defined

µ̄(x, z, t) ≡ g′
hom(c̄) − λ2

x

∂2c̄

∂x2
− λ2

z

∂2c̄

∂z2
.

It must be emphasized that, despite the fact that the miscibility and spinodal limits
disappear for λ ≈ L (see Chapter 8 or [13]), we could not have weakened the thin-slab

assumption to λ̃y & 1. The miscibility gap is an equilibrium property, whereas we are
specifically deriving non-equilibrium time-evolution equations. Moreover, the spinodal gap
disappears in small 1-dimensional systems, but our concentration field is allowed to vary in
x and z, and this variation may preserve phase-separation in the y-direction.
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6.3.3 Boundary conditions

Equation 6.5′ is a second-order PDE, and so must be closed with a pair of boundary condi-
tions. By Assumption 1, there are no bulk fluxes in the x- or z-directions, so flux conditions
are inappropriate. However, the variational boundary conditions (6.1d) still apply. There-
fore, our PDE system has been simplified from a 4th-order equation with non-linear, 3rd-order
boundary conditions to a 2nd-order equation with homogeneous Neumann boundary condi-
tions.

6.3.4 Extension to systems with surface energies

The uniformity condition derived above for the concentration field would no longer be valid
if we were to include a concentration-dependent surface energy density in the free energy
functional. More specifically, suppose we were to add the surface term

Gsurface =

∮

∂V

γ(x, c) dA

to the bulk free energy. Then the variational boundary condition (2.11) would become

n̂ · (K∇c) +
∂γ

∂c
= 0 . (6.1d′)

In general, this condition can only be satisfied by a concentration profile that is fully
quadratic in y, and it may not be satisfiable at all (depending on the exact form of ∂γ/∂c).
Equation 6.5′ should therefore be considered the 1D-transport, SRL, thin-slab, no-surface-
energy equation.

6.3.5 Relevance to LiFePO4

We have provided a formal derivation of a simplified CHR system, but we have yet to discuss
its relevance to our material of interest. Unfortunately, many experimental procedures used
to estimate physical parameters for battery systems are based on mathematical models which
are not valid for phase-separating materials [90]. In particular, we are not aware of any
estimates for the rate constant Ry. This is also noted by Srinivasan and Newman [92], who
estimate an exchange current density by fitting experimental data to a mathematical model
of an entire cell. Their model, however, has several shortcomings which we have already
discussed. There are also analyses based on the Avrami-Johnson-Mehl-Eroofev equation
which indicate that the reactions are rate-limiting [2], but the resulting parameters cannot
be interpreted as reaction rate constants.

As we have defined it, the gradient penalty tensor is probably impossible to measure
directly. However, we can estimate the individual λi as characteristic length scales for the
interphase boundary widths. Thus, images as made by Richardson’s group [21] allow us
to estimate λx ≈ 4 nm. Though a phase boundary in the (1 0 1) direction has also been
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seen [85], we are not aware of any images having been taken of flat interfaces perpendicular
to the y or z axes. However, based on the “relative weakness of the bonding between the bc
layers” [21], we may assume that λy and λz are both larger than λx.

The diffusion constants are also difficult to measure directly, especially for nano-particles.
However, they can be estimated using ab initio techniques [74]. Such computations yield
values of Dy ≈ 10−8 cm2/s, Dx ≈ 10−19 cm2/s, and Dz ≈ 10−45 cm2/s. Though other
techniques can give quite different estimates for each of these parameters [55], there is wide
agreement that the diffusion tensor is highly anisotropic, and that diffusion in LiFePO4 is
essentially one-dimensional.

Finally, the site densities are very well known through experiments and computations.
Indeed, the unit cell of the crystal lattice and its dimensions are pictured very clearly in
several different papers (see, for example, [72, 31]). Ignoring the relatively small changes in
the lattice parameters between LiFePO4 and FePO4, we may approximate the volume of a
unit cell as 290 Å3; since there are 4 lithium ions per unit cell, ρ ≈ 0.014 Å−3. Similarly, the
area of the ac face of the unit cell is about 49 Å2, and there are a total of 2 exposed ions at
the surface per unit cell, so ρs ≈ 0.041 Å−2.

Satisfying the first two assumptions requires bounding the reactive time scale:

L2
y

Dy

≪
(

ρLy

ρs

)
R−1

y ≪ min

(
λ2

x

Dx

,
λ2

z

Dz

)
.

If we use a typical crystal depth of Ly ≈ 50 nm and if we make the estimate that λy and λz

are approximately equal to λx, then we require

3 × 10−3 sec−1 ≪ TR ≪ 2 × 106 sec−1 .

Since TR is a characteristic time for filling an ion channel with lithium, and since we know
that batteries using LiFePO4 can be discharged at rates as fast as 400C [57], it seems rea-
sonable to assume that these bounds are satisfied.

The thin slab assumption, however, is probably impossible to justify. Though we have
not seen experimental evidence of a phase boundary in the y-direction, this is not proof that
one never forms or that it must be very thick. Indeed, this is only evidence that such phase
boundaries are not as energetically favorable as those in the x-direction, and that the particles
have enough time to equilibrate before being examined in an electron microscope. Given
that the gradient penalty tensor is defined as a tensorial extension of the nearest-neighbor
energetic interactions, λy is probably confined to being at the nano-scale, so λy ≫ Ly is
unlikely to be experimentally feasible.

It is worth noting, however, that elastic effects do induce long-range interactions; if we
think of λy as a parameter which somehow approximates these effects, it may indeed be larger
than a few nanometers. Moreover, recent work on elastic effects in LiFePO4 in particular
have shown that the phase boundary tends to align in yz planes, both at equilibrium and
during spinodal decomposition [93]. Dynamic simulations of the full CH equations which
also include elastic effects would certainly still show some curvature of the phase boundary
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Figure 6-3: A plot of µ̄ as a function of c. The lower line is at a chemical potential µlower <
µmax such that there are three different concentrations satisfying µ̄(c) = µlower. The upper
line is at a chemical potential µupper > µmax, so there is only one concentration satisfying
µ̄(c) = µupper.

in the y-direction. However, it might be the case that this curvature is not very important,
and that the tendency for the system to keep this boundary fairly straight might justify the
use of the depth-averaged equation as a significant simplification of the full PDE system.

6.3.6 Wave propagation

As argued mathematically in [90], the depth-averaged equation admits wave solutions. In
this section, we provide a more physical description of this phenomenon. We must first
examine the homogeneous chemical potential

µ̄(c) ≡ a(1 − 2c) + kBT log

(
c

1 − c

)

in more detail (see Fig. 6-3). There is some chemical potential µmax above which there is only
one concentration c such that µ̄(c) = µ but below which there are three such concentrations.
Further, in the three-solution range, the two solutions near 0 and 1 are extremely insensitive
to changes in chemical potential because of the logarithmic singularities at the endpoints.

Now suppose we have a concentration field c(x) that exhibits a phase change but which is
at equilibrium with the electrolyte. Consider an instantaneous increase in the electrochem-
ical potential of the external lithium ions and electrons, but suppose it is still inside the
three-solution range. The concentration fields in the pure phases of the crystal will quickly
equilibrate because, as noted above, concentrations near 0 and 1 are insensitive to changes in
chemical potential. However, the interphase boundary cannot equilibrate as quickly, so will
remain at a lower chemical potential than the electrolyte. This chemical potential difference
drives insertion reactions at the interphase boundary, which will then cause the boundary
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to spread (see Fig. 6-4). A more rigorous analysis [90] shows that, in fact, this spreading
will occur at a constant velocity, i.e. that the depth-averaged equation admits non-linear
wave solutions. Thus, the “active region” of the crystal in which significant lithium insertion
occurs is concentrated along the thin interphase boundary, and the crystal can only fill with
lithium via the motion of this boundary.

We see a similar spreading of the interphase boundary even if the change in chemical
potential increases µext beyond µmax (see Fig. 6-5). However, the initial lithium-poor phase
(in which c ≈ 0) can no longer quickly equilibrate with the electrolyte because there is
now only one solution to µ̄(c) = µext, and it is very close to c = 1. Thus, in addition to
the spreading wave, lithium is also being inserted into regions far away from the interphase
boundary. In particular, then, the active region for lithium insertion is now the entire crystal
face. Moreover, the reactions in these regions will actually accelerate through most of the
filling process because µ̄(c) is a decreasing function of c over much of its range. The particle
will therefore tend to fill much more quickly when the external electrochemical potential is
increased beyond µmax.
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Figure 6-4: Response of the depth-averaged system to a sudden increase in µext of 0.1kBT .
By t̃ = 0.2, the waves are moving with constant velocities.
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Figure 6-5: Response of the depth-averaged system to a sudden increase in µext of 2kBT . By
t̃ = 0.2, the particle is completely filled.
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Chapter 7

Defects in LiFePO4

In Chapters 2 and 3, we developed an elaborate continuum model that could be applied to
the intercalation dynamics in an electrode consisting of phase-separating crystals of active
material dispersed throughout some electrolyte. At the atomic scale, however, the lithium
ions are simply executing a random walk through some energy landscape. One can imag-
ine various impediments to such random walks: substances which cannot host lithium ions
may block their paths through the electrolyte; surface contaminants may prevent entry into
the active material; or crystal defects may leave large, immobile atoms in lithium vacancies
inside the active material. As long as these obstacles are geometrically small and spatially
isolated from one another, they will tend not to dramatically impact three-dimensional ran-
dom walks [53]. Intuitively, lithium ions can always just “go around” them.

LiFePO4 is an unusual material for which the general claims above do not necessarily
hold. Inside these crystals, lithium ions are essentially confined to one-dimensional channels
[74, 78], so even a single point defect can prevent diffusive progress. At a larger scale, the
material is phase-separating [83], so there are energetic barriers against lithium ions straying
into delithiated regions. Moreover, the interphase boundary tends to be flat [21]; a surface
contaminant which blocks ion channels will force the moving boundary to bend around them,
which is energetically expensive. In this Chapter, we will see how even small, rare defects
can have macroscopic consequences for the equilibrium properties and kinetics of LiFePO4.

7.1 Maximum Charge Capacity

We begin by quantifying how individual point defects (i.e., lithium vacancies which cannot
be occupied or diffused across by lithium ions) can impact the overall capacity of a crystal
to store charge. As discussed above, LiFePO4 crystals are essentially large groups of one-
dimensional ion channels across which lithium diffusion is extremely rare. Therefore, even
just two point defects in a single channel will block all of the vacancies in between, reducing
the capacity by much more than just two lithium ions.

Consider a single ion channel with N ≫ 1 sites, numbered from 1 to N . Suppose that
there are D defective sites, {d1, d2, . . . , dD} ⊆ {1, 2, . . . , N}, in which no ions can be stored
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and through which no flux can pass. In a one-sided channel, ions are only allowed to enter
from below (so the outside of the crystal can be considered “site 0”). The one-sided capacity
C1 of the channel is then simply

C1 =
1

N

(
min{d1, d2, . . . , dD} − 1

)

where we must define min ∅ = N + 1. In a two-sided crystal, ions are allowed to enter from
below (“site 0”) or above (“site N + 1”), so the two-sided capacity is

C2 = 1 − 1

N

(
max{d1, d2, . . . , dD} − min{d1, d2, . . . , dD} + 1

)

where we must define max ∅ = N .

We first suppose that the defects form during the creation of the crystal. Each vacancy
is assumed to be defective with probability p ≪ 1, independent of the state of any other
vacancies. We may then assume that the total number of defects D is a Poisson random
variable with parameter λ = Np [40]. Its probability density function is then

P(D = d) = e−λ λd

d!
. (7.1)

7.1.1 One-sided capacity

We take the large-N limit from the beginning, and so model the channel as the continuum
[0, 1]. Then for any x in this closed interval, we may write

P(C1 < x) =
∞∑

d=0

P
(
D = d

)
P
(
at least one defect occurs below x

∣∣ D = d
)

.

The defects can arise anywhere in the channel, obeying only a uniform probability distri-
bution therein. The probability that a single defect occurs in such a way as to leave the
channel with a capacity of at least x is then 1− x. Since the defect locations are completely
independent, we see that

P
(
at least one defect occurs below x

∣∣ D = d
)

= 1 − (1 − x)d .

Substituting this and the Poisson density (7.1) into the above then yields

P(C1 < x) = e−λ

∞∑

d=0

λd

d!
− e−λ

∞∑

d=0

[λ(1 − x)]d

d!
.

These sums are easily computed using the Taylor series for ez to get

P(C1 < x) = 1 − e−λx . (7.2a)
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We know that the channel is at full capacity if and only if no defects have formed, so

P(C1 = 1) = e−λ . (7.2b)

Thus we have a “truncated” exponential distribution (in the sense that it is an exponential
distribution with all of the x ≥ 1 probability mass concentrated at x = 1). This is as
expected since C1 is essentially just the “waiting time” for the first occurrence of a Poisson
process [40].

Combining the above yields the expectation and variance

E(C1) =
1 − e−λ

λ
(7.2c)

Var(C1) =
1 − 2λe−λ − e−2λ

λ2
. (7.2d)

Higher moments or cumulants can, of course, also be computed in closed form given the
probability distribution (7.2). Note that in the “rare-defect” limit λ ≪ 1, we have

E(C1) ∼ 1 − 1

2
λ and

Var(C1) ∼
1

3
λ .

In the “common-defect” limit λ ≫ 1, we have

E(C1) ∼
1

λ
and

Var(C1) ∼
1

λ2
.

The latter is intuitively clear since, by uniformity, we expect the capacity of a one-sided,
D-defect channel to be about 1/D.

7.1.2 Two-sided capacity

In the case of two-sided channels, the probability distribution for the capacity given a fixed
number of defects is no longer intuitively obvious, and instead must be calculated. Given
that there are exactly d > 2 defects, then C2 < x if and only if the maximum distance
between any two defects is < 1 − x. There are d(d − 1) ways to choose one defect to be
closest to 0 and a second defect to be closest to 1, and then all other defects must lie in
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between. Therefore

1

d(d − 1)
P
(
C2 < x

∣∣ D = d
)

=

∫ x

0

dx1

∫ 1

1−x+x1

dx2

∫ x2

x1

dx3 · · ·
∫ x2

x1

dxd

=

∫ x

0

dx1

∫ 1

1−x+x1

dx2 (x2 − x1)
d−2

This integral is elementary, and may be simplified to

P
(
C2 < x

∣∣ D = d
)

= 1 − (1 − x)d − dx(1 − x)d−1 .

Note that for any x ∈ [0, 1], this evaluates to 0 for d = 0 or d = 1, as expected.

Now summing over all d using the Poisson distribution (7.1) for D gives us

P(C2 < x) = e−λ

∞∑

d=0

λd

d!
− e−λ

∞∑

d=0

[λ(1 − x)]d

d!
− e−λλx

∞∑

d=0

d
[λ(1 − x)]d−1

d!
.

Again, each of these sums may be computed in closed form using the Taylor series for ez,
yielding the final result

P(C2 < x) = 1 − e−λx − λxe−λx . (7.3a)

We know that two-sided channels are at full capacity if and only if there are fewer than 2
defects, so

P(C2 = 1) = (1 + λ)e−λ . (7.3b)

Combining the above yields the expectation and variance

E(C2) =
2 − (2 + λ)e−λ

λ
(7.3c)

Var(C2) =
2 + (2 − 2λ − 2λ2)e−λ − (2 + λ)2e−2λ

λ2
. (7.3d)

In the “rare-defect” limit λ ≪ 1, we have

E(C2) ∼ 1 − 1

6
λ2

Var(C2) ∼
1

12
λ2 .

In the “common-defect” limit λ ≫ 1, we have

E(C2) ∼
2

λ

Var(C2) ∼
2

λ2
.
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Note that in the former case, the dependence on λ is quadratic rather than linear as with
the one-sided channels. In the latter case, the capacity is asymptotically equal to twice that
of the comparable one-sided channel; again, this should be intuitively clear.

7.1.3 Defect formation energy

In the computations above, the Poisson parameter λ was taken to equal the product of
the number N of lithium sites per channel and the probability p that an individual site is
defective. We know that lithium sites are spaced about 3 Å apart [83], so N is simply one
third the height of the channel in Angstroms. The probability p, however, is more difficult
to estimate (though it might be measurable experimentally [106]).

From statistical mechanics, we know that if there is some well-defined energy barrier
E for defect formation, then p = e−E/kBT . This temperature T would correspond to the
high temperatures at which the LiFePO4 is produced; once cooled to room temperature, the
defects would be “frozen in place” as the energy barrier for correcting the defect would be
too large to surmount at low temperatures. Thus, given E (which might be estimated from
ab initio computations) and T , we could predict the available capacity of LiFePO4 using the
expectation values computed above.

Alternatively, if the available capacity is known experimentally, then the defect activation
energy may be estimated by reversing the above computation. Table 7.1 is reproduced from
[43] (with several errors corrected), and an additional column has been added listing the
estimated energy barriers for defect formation. Note that the results range over almost
300 meV, reflecting the widely varying production methods and measurement techniques.
However, none of the values is implausible as an atomic-level energy barrier (for example,
they are all in the range of diffusional energy barriers computed for LiFePO4 [74]).

7.2 Charge Capacity Fade

Crystal defects can, of course, arise after the high-temperature synthesis of the particle.
Indeed, for LiFePO4 in particular, each charge and discharge cycle during cell use induces
large elastic stresses [102, 72] due to the differing lattice parameters between the lithiated
and delithiated phases. We can therefore imagine that each charge/discharge cycle could
potentially induce new point defects in the crystal structure.

One way to model this is to assume that every lithium vacancy has some small probability
pc of becoming defective during a single charge/discharge cycle, independent of the state of
nearby sites and of previous cycles. Then we get a Poisson process with parameter λc = Npc

for each cycle. It is easily verified that the sum of independent Poisson random variables
is itself a Poisson random variable whose parameter is equal to the sum of the individual
Poisson parameters. Then if we call λf the Poisson parameter for defect formation during the
crystal formation, we see that the number of defects per channel after m charge/discharge
cycles is just a Poisson random variable with parameter λ = λf + mλc. We can then use all
of the results derived in § 7.1. In particular, the asymptotic results derived above predict a
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Reference Typical Highest Maximum Estimated
channel measured preparation defect
height (nm) specific temperature (◦C) formation

capacity (mAh/g) energy (meV)
[60] 20 166 (0.94C) 335 266
[89] 50 165 (3C) 650 467
[27] 140 145 (C/2) 500 394
[88] 200 141 (C/10) 700 517
[107]a

[101] 500 151 (C/15) 600 554
[32]a

[61] 77 148 (C/30) 600 406
[69]b

a no temperature given
b particles intentionally doped with Zn

Table 7.1: Estimated energy barriers for defect formation in LiFePO4 given several different
production methods. Each capacity is listed along with the rate at which it was measured;
since the low-end voltage also varied between 2 and 3 V, these results are difficult to compare.
Note that the theoretical maximum specific capacity of LiFePO4 is 170 mAh/g, as is easily
computed.

long-time capacity decay that behaves like 1/m. In other words, we get a very slow power
law which decays as one-over-time.

If instead new defects can only form in the unblocked portion of the channel, then the
analysis becomes more complicated. The Poisson parameter is then a function of the current
state of the channel (since every new defect decreases the number N of accessible sites),
and closed-form probability distributions are impossible to compute. However, we can say
heuristically that each new defect in a one-sided channel will decrease the capacity by about
half. This decrease is less in a two-sided channel, but the decay is still geometric. We should
therefore expect that the long-time behavior of the charge capacity is an exponential decrease
with the number of cycles.

A still more sophisticated model might include three time scales: one for the formation
of new, spatially isolated defects (nucleation); another for the formation of new defects near
existing ones (growth); and a third for the disappearance or relaxation of existing defects.
The latter is likely to be negligible until the defect density is very high. Therefore, we would
still see the above-mentioned decays of capacity. However, we would now also get a linear
decay on the second time scale.

In principle, the parameters for such a model could be estimated from experimental
capacity fade data. For example, Huang et al. have measured a very slow linear decay
over 800 cycles [51]. However, there are many potential mechanisms for capacity fade [6,
91, 99], several of which could conceivably yield the same time-dependence as our model.
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Moreover, some preparation methods yield material which fades very quickly [102], in which
case our mechanism would be insignificant. It is therefore likely that macroscopic, whole-
cell experiments would have to be supplemented with more detailed, microscopic studies of
individual crystals in order to validate our hypothesized fade mechanism.

7.3 Wave-Defect Interactions

So far, we have dealt only with static properties of our material. When studying intercalation
dynamics, however, it is also natural to ask how the motion of the interphase boundary
might be disrupted by imperfections in the crystal or in its interface with the electrolyte.
We still focus on localized defects, which we define to mean any physical change in the
system which slows or prevents the filling of a small group of one-dimensional ion channels.
For instance: surface impurities could completely block lithium transport into or out of
several nearby channels; iron atoms might occupy some fraction of the lithium sites, thus
reducing the capacity of a channel; imperfect bonding to an electronically-conductive phase
in the electrolyte might dramatically slow intercalation; or impurities might locally change
the lithium intercalation potential.

From a dynamical point of view, the exact mechanism leading to localized defects is
unimportant. When a phase boundary approaches such a defect, it obviously must bend
around it in order to proceed. However, this bending is energetically costly. In the CHR
model (2.26), this is quantified by the gradient penalty K: not only does the bend intro-
duce new gradients, but it makes the phase boundary—along which there are already sharp
gradients—longer. This will slow the progression of the phase boundary until the defect has
been passed, thus reducing the lithium flux that the crystal can support.

The problem becomes even more pronounced when K is highly anisotropic since such
systems would more heavily penalize an increase in the phase boundary. Moreover, in such
cases the wave-defect interaction becomes non-local in the sense that a defect comparable
in size to the smallest λi will affect the wave out to a distance comparable to the largest λi.
For LiFePO4, in which λz might be large and λx is a few nanometers [90], this means that an
atomic-scale defect can impact the phase-transformation dynamics over the entire crystal.

These ideas are illustrated in Figures 7-1 and 7-2 using the thin-slab approximation (see
§ 6.3); defects are modeled as channels whose total content cannot change. First, note that
the waves in the anisotropic crystal are much flatter than those in the isotropic one, as
they should be. More significantly, by the second time step, the waves have made the most
forward progress in the perfect crystal and the least forward progress in the anisotropic,
defective crystal. This is reflected in Figure 7-2 by a sharp reduction in current while the
wave interacts with the defect. To make the impact of the defect in our anisotropic case
more quantitative, a 2% reduction in the lithium capacity in this part of the crystal has
created up to a 50% drop in the lithium flux over the entire crystal.

Note that at late times, a “hole” is left in the concentration field around the defects with
approximate dimensions of λx × λz (in fact, using the results of § 2.5.1, one can prove that
the hole is an ellipse whose axis lengths scale like λx and λz). These can cause a crystal to
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Figure 7-1: Thin-slab simulations of lithiation waves interacting with crystal defects. The
top row shows results for a perfect (i.e. defect-free) crystal; the middle row shows results for
a crystal with two defects and an isotropic gradient penalty tensor (so λz = λx); and the
third row shows results for a crystal with the same two defects as in the second case, but
with an anisotropic K (λz = 5λx). All cases are identically nucleated by two flat, incoming
waves, and are pictured at the same two time steps.
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Figure 7-2: The instantaneous lithium flux for the three simulations plotted in Fig. 7-1.

suffer an even more dramatic performance degradation if there are several nearby defects.
Because of the gradient penalty term, the lithiation waves are stable to small-wavelength
perturbations. Thus if two defects are sufficiently close, the wave cannot “squeeze through”
the gap between their respective holes, and they effectively become one long defect. An
array of defects with period λz can therefore block a wave entirely, preventing the other side
of the crystal from being lithiated until a new wave is nucleated.

7.4 Conclusion

We have performed a simple analysis of the impact that even atomic-scale defects can have
on the charge capacity of LiFePO4. More significantly, we have shown that our CHR model
predicts a new failure mechanism for LiFePO4: because the phase-transformation waves resist
bending, they can be slowed down (or even stopped altogether) by defects in the crystal or
in the nearby electrolyte. Thus even small drops in the overall lithium capacity of a crystal
can lead to large reductions in the power capacity. This is a result which cannot have been
predicted by the shrinking core model, and once fully explored could impact the design and
development of new battery systems.
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Chapter 8

Size-Dependent Spinodal and
Miscibility Gaps

Intercalation phenomena occur in many chemical and biological systems, such as graphite
intercalation compounds [34], DNA molecules [86], solid-oxide fuel cell electrolytes [79], and
Li-ion battery electrodes [52]. The intercalation of a chemical species in a host compound
involves the nonlinear coupling of surface insertion/extraction reaction kinetics with bulk
transport phenomena. It can therefore occur by fundamentally different mechanisms in nano-
particles and molecules compared to macroscopic materials due to the large surface-to-volume
ratio. Intercalation dynamics can also be further complicated by phase separation kinetics
within the host material. This poses a challenge for theorists, since phase transformation
models have mainly been developed for periodic or infinite systems in isolation [8], rather
than nano-particles driven out of equilibrium by surface reactions.

In this Chapter, we ask the basic question, “Is nano different?”, for intercalation phenom-
ena in phase-separating materials. Our analysis is based on a general mathematical model
for intercalation dynamics recently proposed by Singh, Ceder, and Bazant (SCB) [90]. The
SCB model is based on the classical Cahn-Hilliard equation [16] with a novel boundary
condition for insertion/extraction kinetics based on local chemical potential differences, in-
cluding concentration-gradient contributions. For strongly anisotropic nano-crystals, the
SCB model predicts a new mode of intercalation dynamics via reaction-limited nonlinear
waves that propagate along the active surface, filling the host crystal layer by layer. Here,
we apply the model to the thermodynamics of nano-particle intercalation and analyze the
size dependence of the miscibility gap (metastable uniform compositions) and the spinodal
region (linearly unstable uniform compositions) of the phase diagram.

Our work is motivated by Li-ion battery technology, which increasingly involves phase-
separating nanoparticles in reversible electrodes. The best known example is LiFePO4, a
promising high-rate cathode material [83] that exhibits strong bulk phase separation [83, 4,
21]. Experiments have shown that using very fine nano-particles (< 100 nm) can improve
power density [105, 51] and (with surface modifications) achieve “ultrafast” discharging of
a significant portion of the theoretical capacity [57]. Experiments also provide compelling
evidence [21, 63, 29, 85] for the layer-by-layer intercalation waves (or “domino cascade” [29])
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predicted by the SCB theory [90, 14], in contrast to traditional assumption of diffusion
limitation in battery modeling [33, 92].

There is also experimental evidence that the equilibrium thermodynamics of LiFePO4 is
different in nano-particles. Recently, Meethong et al. have observed that, as the crystal size
decreases, the miscibility gap between the lithium-rich and lithium-poor phases in the mate-
rial shrinks significantly [73] (i.e. the tendency for phase separation is reduced). A suggested
explanation is that smaller particles experience relatively larger surface effects, which has
been supported by calculations with an elaborate phase-field model [94], although without
accounting for surface reaction kinetics. However, it has also been seen experimentally that
carbon coating can reduce the surface effects and prevent the surface-induced reduction of
the miscibility gap [108].

We will show that the SCB model suffices to predict that the spinodal and miscibility
gaps both decrease as the particle size decreases. The analysis reveals two fundamental
mechanisms: (i) nano-confinement of the inter-phase boundary, and (ii) stabilization of the
concentration gradients near the surface by insertion/extraction reactions. These effects
are independent of surface energy models, and indeed are valid for any phase-separating
intercalation system.

8.1 Model

We employ the general SCB model for intercalation dynamics—based on the Cahn-Hilliard
equation with chemical-potential-dependent surface reactions—without any simplifying as-
sumptions [90]. In particular, we do not specialize to surface-reaction-limited or bulk-
transport-limited regimes or perform any depth averaging for strongly anisotropic crys-
tals [90, 14]. Our field of interest is c(x, t), the local concentration of the intercalated
diffusing species (e.g., Li in LiFePO4). Let ρ be the density of intercalation sites per unit
volume in the system (e.g., occupied by Li ions or vacancies), assumed to be constant and
independent of position and local concentration. We take c to be normalized by ρ, so it
is non-dimensional and only takes values between 0 and 1 (e.g., in the local compound
LicFePO4).

We assume that the free energy of mixing in our model system is well-approximated by
the Cahn-Hilliard functional [18, 16, 8]

Gmix[c] =

∫

V

[
ghom(c) +

1

2
(∇c)T K(∇c)

]
ρdV . (8.1)

The function ghom(c) is the free energy per molecule of a homogeneous system of uniform
concentration c, which is non-convex in systems exhibiting phase separation. The gradient
penalty tensor K is assumed to be a constant independent of x and c. Then the diffusional
chemical potential (in energy per molecule) is the variational derivative of Gmix,

µ(x, t) =
∂ghom(c)

∂c
− ∇ · (K∇c) . (8.2)
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The mass flux (in molecules per unit area per unit time) is given by the linear constitutive
relation [26]

J(x, t) = −ρcB∇µ , (8.3)

where B is a mobility tensor. Finally, the dynamics are governed by the mass conservation
equation

∂(ρc)

∂t
+ ∇ · J = 0 . (8.4)

For illustration purposes, we employ the regular solution model for the homogeneous free
energy [84]:

ghom(c) = ac(1 − c) + kBT [c log c + (1 − c) log(1 − c)] . (8.5)

The two terms give the enthalpy and entropy of mixing, respectively. When numerical
values are needed, we will use a/kBT = 5, which is in rough agreement at room temperature
with measurements on LiFePO4 [30]. Of course, other models are possible, but for the
intercalation of a single species in a crystal with bounded compositions 0 < c < 1, the
homogeneous chemical potential µhom(c) = g′

hom(c) must diverge in the limits c → 0+ and
c → 1− due to entropic contributions from particles and vacancies. (This constraint is
violated, for example, by the quartic ghom(c) from Landau’s theory of phase transitions,
suggested in a recent paper on LiFePO4 [85] following SCB.)

Note that K/kBT has units of length-squared. Since it is assumed that K is positive-
definite, we may denote its eigenvalues by kBTλ2

i for real, positive lengths λi. In particular,
when K is diagonal, we define λi ≡

√
Kii/kBT . When the system is phase-separated

into high-c and low-c regions, these λi are the length scales for the interphasial widths
in the different eigendirections [18, 8]. In LiFePO4, experimental evidence [21] suggests
that one of these widths is about 8 nm (though the λi in the other two directions might
be large—comparable to the particle size—as phase-separation in these directions is not
believed to occur). These are therefore the natural length scales for measuring the size of
phase-separating nano-crystals.

Our system of equations is closed by the following boundary conditions on the surface of
the nano-particle:

n̂ · (K∇c) = 0 (8.6)

n̂ · J = −ρsR (8.7)

where n̂ is an outward unit normal vector. Equation 8.6 is the so-called variational boundary
condition, which is natural for systems without surface energies or surface diffusion and
follows from continuity of the chemical potential at the surface. Equation 8.7 is a general
flux condition enforcing mass conservation, where ρs is the surface density of intercalation
sites, and R is the net local rate of intercalant influx (insertion) across the boundary. In
the classical Cahn-Hilliard (CH) model, no mass flux across the boundary is allowed, and
thus R = 0. For intercalation systems [90, 14], we allow for a non-zero reaction rate R
depending on the local values of c and µ and refer to this general set of equations as the
Cahn-Hilliard-with-reactions (CHR) system.
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For the current work (and indeed, for many of the conclusions reached by SCB [90]),
the particular form of R is unimportant. According to statistical transition-state theory in
a concentrated solution [10], the net insertion rate is given by the difference of insertion
and extraction rates, each having Arrhenius dependence on an (excess) chemical potential
barrier. In order to satisfy de Donder’s equation [84], it must have the general form

R = Rins

[
1 − exp

(
µ − µe

kBT

)]
(8.8)

where Rins is the rate for the insertion reaction. For thermodynamic consistency, this µ
must be the same as the diffusional chemical potential used in the bulk equations, and
µe is the external chemical potential of the intercalants in a reservoir phase outside of the
particle (e.g., Li+ in the electrolyte and e− in the metallic current collector of a Li-ion battery
electrode); note that we are again assuming that the particle surface is energetically identical
to the bulk. If the reaction rates were controlled by electrostatic potential differences, for
example, then Rins could include transfer coefficients and the interfacial voltage drop, and
the familiar Butler-Volmer model for charge-transfer reactions [11] would be recovered in
the limit of a dilute solution. Following SCB [90], we do not make any dilute solution
approximation and keep the full CH expression for µ (8.2)—including the second derivative
term—while assuming a uniform external environment at constant µe. Although different
models are possible for the chemical potential of the transition state [10], we make the simple
approximation of a constant insertion rate Rins, consistent with particles impinging on the
surface at constant frequency from the external reservoir. In that case, the composition
dependence of R enters only via the extraction rate.

8.2 The CH Miscibility Gap

Outside of the spinodal range, systems with uniform concentration fields are linearly stable.
However, if there exists a phase-separated solution with the same overall amount of our
material but with a lower free energy, then the uniform system will only be metastable. We
will demonstrate that the miscibility range—the set of overall concentrations for which phase
separation is energetically favorable—shrinks as the particle size decreases.

Unlike the spinodal, the miscibility gap cannot be studied analytically. Instead, we must
solve our original set of equations (8.2–8.4) numerically, looking for phase-separated systems
with lower free energies than the uniform system with the same overall concentration. We
focus only on 1-dimensional systems, or equivalently 3-dimensional systems whose phase
boundary is perpendicular to one of the eigendirections and whose concentration field is
uniform in the other two directions. Note that there is experimental [21] and theoretical
[29] evidence that this is an accurate picture for the concentration field in LiFePO4. We will
henceforth drop the subscripts on λ, and call L the length of the system.

We begin by fixing a single crystal size. For each value of the average concentration,
we choose a corresponding initial condition, and we solve the Cahn-Hilliard equation (using
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a semi-discrete finite volume method and the no-flux boundary condition). The system is
stepped forward in time until the free energy reaches a minimum. The resulting free energies
of mixing for three different crystal sizes and a range of average concentrations are plotted in
Fig. 8-1(a). Note that the curves do not extend across the entire x-axis. This is because, for
sufficiently extreme average concentrations, no initial conditions can be found which lead to
a phase-separated steady state. This suggests that such states do not exist, or that if they
do exist they are not local minimizers of Gmix. The phase-separated energy curves do extend
slightly past the uniform curve, allowing us to estimate the endpoints of the miscibility gap.
The results suggest that the miscibility gap shrinks as the crystal size decreases.

In order to validate this hypothesis, we performed a more exhaustive search for phase-
separated, steady-state solutions near the apparent miscibility endpoints. This was done
using the shooting method for boundary value problems to compute concentration fields
satisfying (8.2) with µ = constant. The resulting field that extremized the average concen-
tration while still having a smaller free energy of mixing than the corresponding constant
field was considered to be the boundary of the miscibility region. The calculated miscibility
gap widths over a range of crystal sizes are plotted in Fig. 8-1(b); they clearly support a
shrinking miscibility gap.

There is a simple physical explanation for this behavior. As discussed above, the inter-
phase region will normally have a width on the order of λ. The average concentration can only
be close to 0 or 1 if this interphase region is close to a system boundary. At this point, the
average concentration can only become more extreme if the interphase region is compressed
or disappears. If it disappears, then we are left with a uniform system, and the average
concentration is outside of the miscibility gap. The other alternative, though, is expensive
energetically due to the gradient penalty term in (8.1). Thus low-energy, phase-separated
systems are limited geometrically to those concentrations in which the interphase region is
(relatively) uncompressed between the crystal boundaries. As the crystal size decreases, the
limits imposed on the average concentration by the incompressibility of the interphase region
becomes more and more severe, and thus the miscibility gap must shrink.

To date, there has not been a systematic experimental study of the size of the miscibility
gap as a function of particle size. Meethong et al., for instance, only test three different
particle sizes—34, 42, and 113 nm [73]. If we use the estimate λ ≈ 8 nm (this is the same
value as was used in [94], and is compatible with the experimental measurement of the
phase boundary width [22]), then these correspond to L’s of 4.25λ, 5.25λ, 14.125λ. The
measurements imply miscibility gaps of about 0.55, 0.70, and 0.95, respectively, whereas
our model predicts gaps of 0.78, 0.80, and 0.89 for these particle sizes. Note, however, that
surface coating seems to increase the miscibility gap to about 0.75 for particles as small as
30 nm [108], and our model predicts a gap of 0.76 for L = 3.75λ.

8.3 The CHR Spinodal Gap

The spinodal gap is the set of concentrations for which an initially-uniform system will
spontaneously decompose through the exponential growth of infinitesimal fluctuations. Thus,
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Figure 8-1: The free energies in the first plot are given per intercalation site so that they are
comparable across different crystal sizes. The dotted line indicates the free energy of mixing
per site for a uniform system of the given concentration.
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perturbation theory is the relevant mathematical tool, and we look for solutions to the CHR
system of the form

c(x, t) = c0 + ǫc1(x, t)

where c0 is a constant and ǫ is a small parameter. If c0 is truly a static solution to the CHR
equations, then by (8.8), µe must equal µ0 = ∂ghom(c0)/∂c at all points on the boundary of
V . The first-order system derived by linearizing about c0 is then

µ1(x, t) =
∂2ghom(c0)

∂c2
c1 − ∇ · (K∇c1) (8.9a)

J1(x, t) = −ρc0B∇µ1 (8.9b)

∂(ρc1)

∂t
= −∇ · J1 (8.9c)

with the boundary conditions

n̂ · (K∇c1) = 0 (8.9d)

n̂ · J1 =
ρsRins

kBT
µ1 . (8.9e)

This is a fourth-order, linear system with constant coefficients. Note that the exact same
set of equations would result even had we taken K and B to be functions of c; the tensors
above would only need to be replaced by the (still constant) values K(c0) and B(c0).

If we have an infinite system with no boundaries, then the Fourier ansatz eik·xest solves
the above system if and only if it satisfies the dispersion relation

s = −c0(k
T Bk)

(
∂2ghom(c0)

∂c2
+ kT Kk

)
. (8.10)

Since B and K must be positive-semidefinite, s will be non-positive whenever ∂2ghom(c0)/∂c2 ≥
0. However, if ∂2ghom(c0)/∂c2 < 0, then the c0 will be unstable to long-wavelength pertur-
bations. In particular, for the regular solution model (8.5), the criterion for linear stability
becomes

−2
a

kBT
+

1

c0(1 − c0)
≥ 0 .

Thus a high enthalpy of mixing will promote instability of uniform systems with moderate
concentrations.

If instead the system geometry is finite, then the boundary conditions will constrain the
set of allowable wave vectors k. We again focus on one-dimensional systems for simplic-
ity. Then if the system occupies the line segment from 0 to L, the general solution of the
perturbed equations for the CH system (Rins = 0) is a sum of terms of the form

c1(x, t) = A cos
(nπ

L
x
)

est
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Figure 8-2: Width of the spinodal gap as a function of crystal size. The dotted line indicates
the width of the spinodal region for an infinite system. The other three curves are given for
different values of the non-dimensionalized reaction rate constant R ≡ (ρs/ρλ)(Rins/(D/λ2)),
where D = BkBT is the diffusion constant in the bulk.

for any integer n. The dispersion relation (8.10) still holds, but the wave number must equal
nπ/L for integer values of n in order to satisfy the boundary conditions. In other words, we
can no longer perturb the system with arbitrarily-long wavelengths. The stability criterion
is ∂2ghom(c0)/∂c2 > −π2λ2/L2.

For the regular solution model (8.5), the criterion for linear stability becomes

−2
a

kBT
+

1

c0(1 − c0)
> −π2λ2/L2 .

The spinodal region is defined as the range (α, 1 − α) of unstable c0 values. It is easily
verified that α is a decreasing function of L, i.e. that the spinodal range is more narrow
for smaller crystals. Moreover, for sufficiently small values of λ/L, the above inequality is
satisfied for all values of c0, in which case there is no spinodal region at all. These facts
are demonstrated in Fig. 8-2. These results date back to Cahn’s 1961 paper [16] and are
known in the phase-field community. However, it seems that their relevance for nano-particle
composites—as in Li-ion batteries—has not yet been appreciated.

Moving beyond classical bulk models, we will now show that non-zero boundary reactions
can further reduce the spinodal gap width. Even the linear perturbed system of equations is
no longer analytically tractable when Rins 6= 0, and in particular, the wave numbers are no
longer simply nπ/L. According to the dispersion relation (8.10), every s is associated with
four wave numbers, and in general it takes a linear combination of all four such functions to
satisfy the boundary conditions. For any given L, c0, and s, we may compute the four corre-
sponding wave numbers kj, and then look for a set of coefficients Aj such that

∑4
j=1 Aje

ikjxest

solves the perturbed PDE and boundary conditions (8.9). Because the system is linear and
homogeneous, this can be reduced to finding a solution to some matrix equation MA = 0,
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which has solutions if and only if the determinant of the matrix M is 0.

Therefore, for any given system size L and reaction rate constant Rins, we must numeri-
cally solve for the range of concentrations c0 that admit solutions to the perturbed equations
for at least one positive value of s. Results of such computations are shown in Fig. 8-2.
Notice that increasing the reaction rate constant reduces the spinodal gap. Moreover, it was
found numerically that increasing Rins tends to reduce the growth rate constant s.

These effects cannot be explained solely in terms of chemical potential perturbations
near the boundary. Instead, we must examine the nature of the allowable perturbations for
different reaction rates. For large values of Rins, any non-zero µ1 at the boundaries causes
large perturbations in the reaction fluxes by Eq. 8.9e. In order for J1 to be differentiable near
the boundaries, we must also have large bulk fluxes nearby. In general, this would require
large concentration gradients, or equivalently short-wavelength perturbations. But, as is
clear from the dispersion relation (8.10), it is precisely the short-wavelength perturbations
which are rendered stable by the gradient penalty term (see Ref. [49] for an interesting
discussion of this point).

More mathematically, suppose µ1 is non-zero at a boundary. Then by (8.9e), J1 must be
non-zero there, which by (8.9b) implies that µ1 must have a non-zero gradient. Combining
these two terms with our ansatz for c1 yields the requirement

∣∣∣∣c0

(
ρ

ρs

)
(kBTB) k

∣∣∣∣ ∼ Rins .

We therefore see that when µ1 is non-zero at a boundary, the wave number scales linearly with
the reaction rate constant. Again, large Rins would require large k, which are increasingly
stable.

As the reaction rate increases, then, unstable perturbations satisfying (8.9) must have µ1

and ∇µ1 close to 0 near the boundaries. However, this requires long-wavelength perturba-
tions, and we have already shown that these will become increasingly stable as the crystal
size shrinks. Thus fast reaction rates will tend to stabilize small nano-particles.

Note, however, that for systems larger than about 2.5λ, the spinodal gap does not dis-
appear even for infinitely fast reactions. This implies that there must exist infinitesimal
perturbations to a uniform system which lead to phase separation without ever changing
the diffusional chemical potential at the boundaries of the system. This has been verified
numerically by solving the full CHR system (8.2–8.8) in the limit Rins → ∞. However,
by limiting the spinodal decomposition to only occur via this small class of perturbations,
higher reaction rates reduce the decomposition growth rate and the spinodal gap width.

Though we have used a specific mathematical model to derive these results, the conclu-
sions are generally valid. Regardless of the bulk model, a bounded system will only allow
a discrete spectrum for its first-order perturbations. The smallest admissible wave numbers
will scale like 1/L, and the system will suffer linear instability for more narrow ranges of
concentrations as the system size shrinks. Moreover, fast reaction rates at the boundaries
require short wavelength perturbations, and such perturbations are energetically unfavorable
when there is a diffuse interface between phases.
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8.4 Other Effects

There are at least two important effects which we have excluded from our analysis. First,
we have intentionally neglected surface energies in order to demonstrate that purely bulk
effects and reaction rates can cause shrinking spinodal and miscibility gaps. However, surface
energies could easily be accommodated. For example, if the free energy of the system were to
include a concentration-dependent surface tension between the particle and its environment,

Gmix = Gmix,bulk +

∫

∂V

γ(c) dA ,

then the variational boundary condition (8.6) would need to be replaced by

n̂ · (K∇c) +
1

ρ

dγ

dc
= 0 .

This would change the analysis, but would not significantly affect the conclusions.
Perhaps a more serious omission for LiFePO4 in particular is elastic stress in the crys-

tal due to lattice mismatches. However, it has been demonstrated [93] that these effects
can frequently be accommodated by simply decreasing the enthalpy-of-mixing parameter a.
Given our results above, elastic stress would therefore enhance the shrinking spinodal and
miscibility gaps.

8.5 Conclusion

We have shown that intercalation phenomena in phase-separating materials can be strongly
dependent on nano-particle size, even in the absence of contributions from surface energies
and elastic strain. In particular, the miscibility gap and spinodal gap both decrease (and
eventually disappear) as the particle size is decreased to the scale of the diffuse interphase
thickness. Geometrical confinement enhances the relative cost of bulk composition gradients,
and insertion/extraction reactions tend to stabilize the concentration gradients near the
surface. These conclusions have relevance for high-rate Li-ion battery materials such as
LiFePO4, but are in no way restricted to this class of materials.
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Chapter 9

Inter-Particle Interactions

It has recently been discovered that, upon partial discharge of a rechargeable cell with a
composite LiFePO4 cathode, most of the individual particles of the active material are ei-
ther completely lithiated or completely delithiated [29]. This inter-particle “mosaic model”
runs counter to the intuitive picture that all particles should be in similar, partially-lithiated
states. The authors of the above study conclude that since LiFePO4 is a phase-separating
material, the nucleation of the lithiated phase must be slow and the propagation of the inter-
phase boundary must be fast. While this certainly could be true (and there is independent
experimental evidence for such a conclusion [2]), it does not explain other studies which show
that smaller particles tend to be the ones which are completely lithiated while larger particles
remain unlithiated [19]. In fact, since nucleation is a stochastic event whose probability of
occurrence is increased by larger volume (for homogeneous nucleation) or surface area (for
heterogeneous nucleation), any justification for the mosaic model based on nucleation rates
alone must favor the larger particles.

We first point out that there is a simple, energetic explanation for the mosaic model
which is independent of nucleation rates. As cell discharge begins, all LiFePO4 particles
will be in similar states of delithiation. Whether by nucleation or spinodal decomposition,
phase transition is the result of thermal fluctuations, and as such is inherently stochastic.
Thus, this process will not occur simultaneously in different particles. Once a particular
particle does undergo phase separation, however, it will immediately be in a lower-energy
state (see Fig. 9-1). Consequently, it will be energetically favorable for lithium ions in the
electrolyte to be inserted into the phase-separated particles. As the energy of insertion into
the phase-separated particles will remain relatively constant (this can be understood, for
instance, by noting the long voltage plateau seen experimentally [83]), this disparity will
persist until phase separation is lost near the end of discharge for the lower-energy particle.
Thus whichever particle phase-separates first will tend to intercalate more of the local lithium
ions, greatly reducing the chances of phase-separation in nearby particles until the first fills
up. We call this one-at-a-time behavior the “mosaic instability” (see Fig. 9-2).

This explanation can also be cast in terms of reaction rates. Suppose insertion into a
phase-separated crystal is lower in free energy than insertion into a non-separated crystal by
some amount ∆G. Then if these reactions are governed by Arrhenius rate laws, insertion
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Figure 9-1: Generic free energy plot demonstrating the thermodynamics of phase separation.
The outer pair of vertical lines marks the edge of the miscibility gap, the inner pair marks
the spinodal gap, and the dashed line is the common tangent along which phase coexistence
is energetically favorable. Phase separation occurs at some capacity inside the miscibility
gap, and so is associated with a decrease ∆G in free energy.

into the phase-separated crystal will tend to be faster by a factor of exp(∆G/kBT ) (where kB

is the Boltzmann constant and T is the temperature). Thus even small energy changes upon
phase-separation will result in exponentially faster reactions into that particle. Again, this
will tend to strongly favor the filling of phase-separated particles before nucleation occurs in
nearby particles.

Note that because of the exponentially faster reaction rates, the local lithium concentra-
tion in the electrolyte will quickly decrease. As long as the concentration was not too high
to begin with, this will tend to increase the free energy of the lithium ions due to entropic
effects. If this depletion is too severe, the free energy of the electrolytic lithium ions may
drop to a level below that of the ions in the non-separated particles. At this point, the
non-separated particles will not simply be intercalating ions more slowly, but rather will be
(on average) de-intercalating ions. This would obviously dramatically enhance the mosaic
instability.

In order to understand the experimentally-observed size-dependence of the mosaic effects
[19], we must have a model for the phase transition. Suppose there is no nucleation, but
rather that phase-separation occurs purely through spinodal decomposition. During the
early stages of cell discharge, the lithium concentration inside a single particle is not quite
uniform; it must be lower near the middle than near the boundaries due to diffusional
transport limitations in the crystal. Such inhomogeneities will naturally be more extreme
in larger particles. This disparity will then allow the smaller particles to reach the critical
concentration necessary for spinodal decomposition earlier. In summary, small particles reach
critical concentrations first, allowing them to phase-separate before larger particles, and thus
to become more energetically-favorable targets for lithium insertions from the electrolyte.
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Figure 9-2: Schematic of the inter-particle mosaic instability.

9.1 Model

We will now briefly describe the mathematical model for intercalation dynamics introduced
by Singh et al. [90] and demonstrate that it predicts the mosaic instability. Define ρ to be
the Li site density (in molecules per unit volume) in the system, which we will take to be a
constant independent of position and local concentration. Our field of interest is c(x, t), the
local Li concentration normalized by ρ (so 0 < c < 1).

We assume that the free energy of mixing in our system is well-approximated by the
Cahn-Hilliard functional [18]

Gmix[c] =

∫

V

ρ

[
ghom(c) +

1

2
(∇c)T K(∇c)

]
dV , (9.1)

where ghom(c) is the free energy per molecule of a homogeneous system of uniform concentra-
tion c. The gradient penalty tensor K is assumed to be a constant independent of x and c.
Then the diffusional chemical potential (in energy per molecule) is the variational derivative
of Gmix,

µ(x, t) =
∂ghom(c)

∂c
− ∇ · (K∇c) . (9.2)

We assume that the flux (in molecules per unit area per unit time) is given by the linear
constitutive relation [26]

J(x, t) = −ρcB∇µ , (9.3)

where B is a mobility tensor. Finally, the dynamics are governed by the conservation
equation

∂(ρc)

∂t
+ ∇ · J = 0 . (9.4)

Note that unlike previous work with this model [90, 14], we do not restrict ourselves to
situations in which “depth-averaging” is appropriate.

We will only employ the regular solution model for the homogeneous free energy [84]:

ghom(c) = ac(1 − c) + kBT [c log c + (1 − c) log(1 − c)] . (9.5)

The first term gives the enthalpy of mixing and the second term gives the entropy of mixing.
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When numerical values are needed, we will use a/kBT = 5, which is in rough agreement at
room temperature with measurements on LiFePO4 [30].

Our PDE is closed by the boundary conditions

n̂ · (K∇c) = 0 and n̂ · J = −ρsR , (9.6)

where n̂ is an outward unit normal vector. The first is the variational boundary condition,
which is natural for systems without surface energies or surface diffusion. The second governs
material exchange between the particle and its environment; ρs is the surface density of
intercalation sites, and R is the local rate of Li influx across the boundary. For intercalation
materials being charged and discharged, we will use an Arrhenius-type reaction condition
to model the transfer of ions between the electrode particle and the electrolyte. For the
current work (and indeed, for many of the conclusions reached in [90]), the exact form of R
is unimportant. In order to satisfy de Donder’s equation [84], it must be given by

R = Rins

[
1 − exp

(
µ − µe

kBT

)]
(9.7)

where Rins is the rate for the insertion reaction, µ is the diffusional chemical potential used
in the bulk equations, and µe is the chemical overpotential for the reactants outside of the
particle; note that we are again assuming that the particle surface is energetically identical
to the bulk. If the reaction rates were controlled by electrical potential differences, for
example, then Rins would include transfer coefficients and interfacial potential differences,
and the resulting rate law would be of the Butler-Volmer form [9]. For simplicity, we take
Rins to be a constant.

9.2 Numerical Results

Before discussing solutions to the full set of equations above, we note that a maximum
difference in the reaction rates can be easily computed. Indeed, linear stability analysis
of the Cahn-Hilliard equation in an infinite crystal shows that spinodal decomposition will
occur at concentrations c satisfying [16]

−2
a

kBT
+

1

c(1 − c)
= 0 .

Thus, for c ≈ 0.113 (assuming a = 5kBT ), we could conceivably have a phase-separated and a
homogeneous particles with this same average concentration. The diffusional potential of the
homogeneous particle can then be computed directly from Eq. 9.2, and would be ≈ 1.81kBT .
The diffusional potential of the phase-separated particle, on the other hand, would be very
close to 0. Hence the insertional energy difference would be ≈ 1.81kBT , making the reaction
rate for the phase-separated particle more than 6 times faster than that of the homogeneous
particle.
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Figure 9-3: Simulation results for the constant-C-rate lithiation of a set of three nearby
particles. The solid lines give the data for the particle of intermediate size; the dashed lines
give the data for the particle which is 5% smaller; and the dash-dot lines give the data for
the particle which is 5% larger. The dotted black line represents the overall capacity of the
three particles in the first plot; note that the individual capacity curves have been artificially
shifted in the vertical direction to make them easier to distinguish. The labels along the
x-axis correspond to the states in Fig. 9-2.
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Deriving more information from the model described above requires solutions to the
Cahn-Hilliard-with-reactions system. This is a non-linear, 4th-order equation with non-linear,
3rd-order boundary conditions, so it must be solved numerically. We employ a semi-discrete
Finite Volume Method (FVM), and use the implicit Crank-Nicolson method for the time-
stepping. The equations are solved for multiple particles simultaneously in order to simulate
the interactions described above. This model cannot accommodate nucleation, so all phase
transitions occur via spinodal decomposition. Moreover, since lithium transport is essentially
one-dimensional in LiFePO4[74], we limit ourselves to one-dimensional simulations.

The mosaic instability is an inter-particle interaction, but is limited to those which are
sufficiently nearby one another to affect the lithium concentrations in their respective envi-
ronments. We will therefore assume that the particles in any given simulation are so small
and close together that the lithium in the electrolyte is at a uniform chemical potential (µe

in Eq. 9.7); this also allows us to avoid having to solve for ion transport in the electrolyte.
However, to model either transport limitations in the electrolyte or constant-C-rate discharge
of the cell, we adjust µe at every time step to maintain a constant overall influx of lithium
to the complete set of particles being simulated.

Figure 9-3 shows the results of a simulation using three particles of slightly different
sizes. Figure 9-3(a) clearly demonstrates the mosaic instability, and moreover that smaller
particles are almost completely lithiated before larger particles are more than about 10%
filled. Examination of the time-dependent concentration fields shows that, as expected,
each of the pictured events in which one particle begins to fill up at the expense of the
others is associated with phase-separation in the first crystal. Further, the effect described
above in which non-phase-separated particles actually lose lithium is evident after each new
particle phase-separates. The energetic cause for the reaction disparity is evident from
Fig. 9-3(b). The large negative spikes in chemical potential occur during phase-separation,
and result from the extreme instability of the concentration field between near-homogeneity
and complete phase separation.

Note that the number of particles was chosen only for ease of display. Every simulation
we have performed with as many as eleven particles has demonstrated the same behavior.
Moreover, this effect seems to be independent of the exact diffusion constants, reaction rates,
and even reaction rate laws employed.

9.3 Discussion

First, it must be pointed out that the physical arguments made above are based purely on
the active material being strongly phase-separating. Though we have used LiFePO4 as our
primary example, this is mainly because of the active research being done on this mate-
rial. Our arguments and mathematical model should yield similar predictions for composite
cathodes employing any other phase-separating material (e.g. LiMn2O4 [80]).

Second, any mosaic instability is undesirable in a functioning battery because it causes
increased polarization losses. Maintaining a fixed current requires much higher overpotentials
when only a fraction of the cathode particles are “active” at any one time. Thus, building
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a cell with monodisperse LiFePO4 particles would limit the mosaic instability and minimize
this class of voltage drops. This effect was noticeable in the numerical studies described
above, but further work is necessary to understand the impact on a real system.

There are a few restrictions on our analysis. First, the discharge must be sufficiently slow
for phase-separation in individual particles to be discrete events. Second, the particles must
have the same set of neighbors throughout discharge. Third, the system must not be allowed
to equilibrate; since the lowest-energy state at intermediate overall levels of charge is for all
particles to be phase-separated, the mosaic state (Fig. 9-2) is only metastable and will not
last indefinitely. These restrictions are certainly met by the discharge of a working cell, as
in [29]. Some experiments which have not reproduced the mosaic behavior are performed
under conditions which are dramatically different. For instance, Ramana et al. [85] use a
strong chemical deintercalant; they actively stir an aqueous solution containing the LiFePO4

particles; and they wait 24 hours before examining the material.
We also note that, though we do not disagree with the detailed analysis provided by

Delmas et al. [29], the conclusion reached by the authors that nucleation is slow is not
necessary given the presented experimental data. Indeed, even if nucleation were fast, we
would still see the results of the mosaic instability since phase-separated particles would
still tend to slow down nucleation in other nearby particles. Similarly, the mosaic instability
might explain the slow aggregate nucleation rate inferred from experiments using the Avrami
equation [2].

As discussed more fully in [90], experimental evidence renders the “shrinking-core” model
for intercalation untenable from a purely dynamical point of view. What we have shown
here makes an even stronger case. Indeed, even if a Fickian model could be concocted to
mimic the curious behavior of the phase boundary in LiFePO4, it would still be insufficient
to recreate the complex inter-particle behavior of the mosaic instability. This only arises
because of the energy difference between homogeneous and phase-separated states, which is
not present in simple diffusional models.

It is noted by Delmas et al. [29] that while the shrinking-core model does not accurately
describe single-particle behavior, it should still be valid for conglomerates, i.e. as a good
description for aggregate behavior over multiple nearby particles. However, if lithiation
truly occurs one crystal at a time (locally) as we have argued, then shrinking core is probably
invalid on any scale.

The most important implication of this work is to the mathematical analysis of entire
cells which employ phase-separating materials. The most influential such model [33] and
software [75] were developed by Newman’s group. An implicit assumption thereof is that
the concentration fields among nearby particles is identical. This “mean-field” assumption
is invalidated by the mosaic instability, and would remain invalid even if the shrinking-core
model were replaced with a more physically-motivated diffusion equation as described by
Singh et al. [90] and used above. Indeed, it would appear that the microscopic behavior of
the active material would have to be described using some simplified model which accounts
for mosaic effects.
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Chapter 10

Conclusion

This thesis has provided a very general and detailed study of the atomic kinetics in small
(micron- or nanometer-scale), multiphase particles which interact chemically with their envi-
ronment. In Part I, we discussed our approach to continuum modeling of such systems, and
in Part II we made several theoretical predictions for their behavior. We must emphasize
that, while the sophisticated mathematical model we have employed provides quantitative
predictions, we have also given simple, physical arguments for most of our conclusions. More-
over, though we have used lithium-ion batteries as our primary example, none of our results
are limited to these devices.

Though our results are general, their most important application is certainly to lithium-
ion batteries, and in particular to those using LiFePO4-based cathodes. As we discussed in
the introduction, porous electrode theory as usually employed in the battery community has
many shortcomings when used with phase-separating materials. In particular, it does not
model the energy barrier to, or time-scale for, phase separation; the energy of the interphase
boundary once separation has occurred; or the effect that these energies have on the non-
ideality of bulk diffusion or ion transfer reaction rates at the boundaries. In essence, porous
electrode theory, when applied to phase-separating materials, ignores much of the physics at
the smallest scale. It is precisely this weakness that we have hoped to overcome.

There are currently three major omissions from our work. First, we have neglected elas-
ticity despite its known importance for LiFePO4. This was done for the sake of simplicity:
including elastic effects would have greatly complicated an already-complicated mathemati-
cal model. However, as was discussed in Chapter 6, it is hoped that our model is capable of
approximating the CHR-with-elasticity system.

Second, we have not completely understood the phase-separation process. Being based on
the Cahn-Hilliard equation, our model is, by design, able to simulate spinodal decomposition.
However, it cannot model nucleation, the process of overcoming the energy barrier to phase-
separation outside of the spinodal gap. The size of the critical nucleus and the energy
required for its formation could be estimated by solving the Cahn-Hilliard equation for
unstable steady states. However, the time scale required for the stochastic formation of such
a nucleus is more difficult to compute since, especially in materials like LiFePO4, there are
almost certainly transport limitations to this process. Indeed, the one-dimensional transport
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in LiFePO4 may make homogeneous, bulk nucleation very slow, in which case it may be safely
ignored. However, extending the methods of Chapter 5 to the insertion reactions may reveal
that heterogeneous nucleation at the boundaries can be fast.

Third, in focusing on the physics at the particle level, we have not adequately connected
our predictions to the macroscopic behavior of a composite cathode. For example, we have
shown that defects can reduce the flux from individual particles, but we have not predicted
the impact on the cell’s total power that any given distribution of defects might have. Sim-
ilarly, we have described the inter-particle mosaic instability, but much larger simulations
would be required to understand the spatial extent of this interaction and to quantify its
cost to the cell voltage.

Despite these failings, it is our hope that this work will serve as the foundation for new,
necessarily simpler models for a composite cell. By starting with an accurate description of
the physics at the lowest level and building up, perhaps we can create a new porous electrode
theory capable of answering the questions above.
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Appendix
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Appendix A

Source Code

I wrote over 11,000 lines of Matlab scripts while working on this thesis. Some of it was
highly specialized (for example, searching for unsteady perturbations and low-energy, phase-
separated solutions for Chapter 8). Obviously, though, I frequently needed to solve the
full, time-dependent CHR system. To illustrate my approach, I have included the Matlab
source code used to solve time-dependent and equilibrium problems in one dimension. This
includes functions for solving many different reaction-diffusion equations, including Fick’s
law, diffusion with a regular solution free energy, and the CHR system in various parameter
regimes. Though I have also solved these problems in two dimensions, the code to do so is
very similar to the one-dimensional version, so it is not included here.

The general pattern for working with this software is as follows: The user first calls
the function chr1d_params_init() (included in § A.1) to build a parameters structure.
This selects a reaction-diffusion model, sets all of the physical parameters for that model,
and describes the numerical method used to solve the equations. Along with the initial
concentration field, this structure is then passed to the function chr1d_solve() (included
in § A.2) which solves the requested problem. Finally, the user may pass the results to the
function chr1d_animate() (not included) for analysis (plotting concentration and chemical
potential fields, computing voltages and currents, etc.).

A.1 chr1d params init.m

1 % chr1d params init()
%
% This function builds the parameters structure used by the other chr1d * ()
% routines. Every parameter may be set by the user, though reasonable defaults

5 % are provided. See below for details.
%
% chr1d params init() returns the default parameters structure
%
% chr1d params init('name1,value1, 'name2',value2, ...) returns the default
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10 % parameters structure, except that parameter namei is set to valuei
%
% chr1d params init(params,'name1,value1, 'name2',value2, ...) returns the
% parameters structure params, except that parameter namei is set to valuei
function params = chr1d params init(varargin)

15

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% BUILD THE DEFAULT PARAMETERS STRUCTURE %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

20 %%%%%%%%%%%%%%%%%%%%%%
% PHYSICAL CONSTANTS %
%%%%%%%%%%%%%%%%%%%%%%

% Boltzmann constant in joules/kelvin
25 def .phys.kB = 1.3806504e −23;

% Avogadro number
def.phys.NA = 6.02214179e23;

30 % elementary charge in coulombs
def.phys.q = 1.602176487e −19;

% temperature in kelvins
def.phys.T = 300;

35

% standard voltage of the redox reaction Li + FePO4 −> LiFePO4
% The default is taken from ab −initio calculations in
% Phys. Rev. B 70, 235121 (2004).
def.phys.E = 3.47;

40

% free energies (in electron volts per molecule) of pure Li, FePO4 , and
% LiFePO4
% These defaults are room temperature data from Fei Zhou's atomistics
def.phys.gLi = −1. 899;

45 def.phys.gFePO4 = −42.6328;
def.phys.gLiFePO4 = −48.10;

% diffusion constant for the system, in mˆ2/s
% This default comes from Ceder's paper for LiFePO4.

50 def .phys.D = 1e −11;

% the gradient penalty length, in meters
def.phys.lambda = 1e −9;

55

%%%%%%%%%
% MODEL%
%%%%%%%%%

60
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% the diffusion model to use
def.model.diffusion = 'cahn hilliard';

% This is the inverse of the dimensionless total (dis)charge time for
65 % simulations with constant (dis)charge rates. The default is [],

% which indicates that params.ndg.mu e should remain constant
% throughout the simulation.
def.model.C rate = [];

70 % true if and only if the equations should be solved in the SRL limit ,
% i.e. if the bulk relaxation should occur instantaneously between
% time−steps at the boundary
% If SRL limit is false, then the Damkohler number is taken literally:
% Da==0 requires no −flux boundary conditions, and Da >0 sets the

75 % relative time −scale for the boundary reactions. If SRL limit is
% true , then Da is ignored, and the PDE is solved on the reactive
% time−scale. Note that the SRL limit can apply even to real systems
% with large Damkohler numbers, for instance if the reactants are very
% dilute.

80 def .model.SRL limit = false;

% true if and only if time integration should be skipped in favor of
% solving directly for a steady state
def.model.equilibrate = false;

85

%%%%%%%%%%%%%%%%%%%%%%%%%%
% NON−DIMENSIONAL GROUPS %

90 %%%%%%%%%%%%%%%%%%%%%%%%%%

% enthalpy of mixing per molecule, non −dimensionalized by k B* T
% According to experimental data, this should be about 5 for LiFePO4 at
% 300K (c.f. Dodd, Yazami, and Fultz in Electrochemical and Solid −State

95 % Letters, volume 9, number 3, pages A151 −−A155, 2006).
def.ndg.a = 5;

% length of the system, non −dimensionalized by $ \lambda$
def.ndg.L = 10;

100

% Damkohler number $k b \lambdaˆ2 / D$, where $k b$ is the rate constant
% for the backward reaction FePO4 + Liˆ+ + eˆ − <−− LiFePO4
% If this is 0, there are no boundary reactions. If this is Inf
% (i.e. if we are in the BTL limit), then the boundary reaction is

105 % replaced with a boundary condition on the chemical potentials .
def.ndg.Da = 1;

% sum of the electrochemical potentials of the external electron and
% Liˆ+ ion, divided by k BT

110 def .ndg.mu e = 0;
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% $\rho s / \rho$, non −dimensionalized by $ \lambda$
% This should be equal to the non −dimensionalized width of a unit cell
% in the crystal, or equivalently the inverse of the width of the phase

115 % transition given as a number of unit cells. In the model, this only
% appears as a multiplier for Da, but we'll keep them separate for
% clarity.
def.ndg.w = 1/3;

120

%%%%%%%%%%%%
% NUMERICS%
%%%%%%%%%%%%

125

% the number of grid points in the space discretization
def.num.N = 100;

% which time −stepping scheme to use
130 def .num.ode = 'crank nicolson' ;

% This is the RelTol option for the integrator (see help for odeset ()).
% This is the primary parameter for improved accuracy when an internal
% Matlab time −stepper is being used.

135 def .num.RelTol = [];

% This is the MaxStep option for the integrator (see help for odeset ()).
% It is used to decrease the number of time −steps output by my
% implicit time −steppers.

140 def .num.MaxStep = [];

% This is the AbsTol option for the integrator (see help for odeset ()).
% This is the primary parameter for improved accuracy when my
% implicit time −steppers are used.

145 def .num.AbsTol = [];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
150 % BUILD THE REQUESTED PARAMETERS STRUCTURE %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Names = {'kB'; 'NA'; 'q'; 'T'; 'E'; 'gLi'; 'gFePO4'; 'gLiFePO4'; ...

'D'; 'lambda' ; ...
' diffusion'; 'C rate'; 'SRL limit' ; 'equilibrate'; ...

155 ' a'; 'L'; 'Da'; 'mu e'; 'w'; ...
' N'; 'ode'; 'RelTol'; 'MaxStep'; 'AbsTol' };

su b structs = {'phys'; 'phys'; 'phys'; 'phys'; 'phys'; ...
'phys'; 'phys'; 'phys'; 'phys'; 'phys'; ...

'model'; 'model'; 'model'; 'model'; ...
160 ' ndg'; 'ndg'; 'ndg'; 'ndg'; 'ndg'; ...

'num'; 'num'; 'num'; 'num'; 'num'; };
[params ,err str] = build options struct(def, varargin, Names, sub structs);
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if ( ¬isempty(err str))
error(err str);

165 end
end

A.2 chr1d solve.m

1 % chr1d solve()
%
% This is semi −discrete, finite −volume −method code for solving various
% 1−dimensional diffusion problems. See chr1d params init() for a description

5 % of the parameters; see below for allowable values, combinations , and
% simplifications.
%
% The grid layout is as follows:
%

10 % cbar 1 cbar 2 ... cbar N
% | o | o | ... o |
% x 0 x 1 x 2 ... x N
%
% Each " |" marks a boundary for a control volume;

15 % x 0=0, N=params.num.N, and x N=params.ndg.L.
% Each "o" marks the mid −point of a control volume at which a value for cbar is
% stored. Each cbar is an AVERAGE concentration over a control volume
% (and consequently a second −order −accurate approximation for the exact
% concentration at the mid −point of the control volume).

20 % Fluxes are computed at the boundaries BETWEEN control volumes .
%
% parameters:
% params − the chr1d parameters structure
% ts − the array of time steps at which data will be output

25 % cbars0 − the concentration field at time 0; in the finite −volume
% interpretation, cbars(i) is the average concentration between
% (i −1) * h and i * h, where h=params.ndg.L/params.num.N
%
% returns:

30 % T − copy of ts
% Y − Y(i,j) will be the value of cbar for the control volume between
% x {j −1} and x j at time T(i)
% MU− if a constant C −rate simulation is being performed, then
% MU(i) will be the mean mu e needed between T(i) and T(i+1)

35 function [T,Y,MU] = chr1d solve(params, ts, cbars0)

%%%%%%%%%%%%%%%%%%
% INITIALIZATION %
%%%%%%%%%%%%%%%%%%

40

% Validate the inputs
if (nargin 6= 3)
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error( 'exactly 3 input parameters required');
end

45 if ( ¬isstruct(params))
error( '1st argument must be the struct returned by chr1d params init');

end
if (numel (cbars0) 6= params .num.N)

error( 'cbars0 must have exactly params.num.N elements');
50 end

if ( any (cbars0(:) ≤0) | | any(cbars0(:) ≥1) )
warning( 'cbars0 should consist only of data between 0 and 1');

end

55

% Get the ode function corresponding to the requested diffusion model
odefun code = {'fick'; ...

'fick regular'; ...
'cahn hilliard'; ...

60 ' cahn hilliard depth averaged'; ...
'cahn hilliard cook' };

odefun func = {@odefun fick; ...
@odefun fick regular; ...
@odefun cahn hilliard; ...

65 @odefun cahn hilliard depth averaged; ...
@odefun cahn hilliard cook };

odefun jac = {@Jac fick; ...
@Jac fick regular; ...
@Jac cahn hilliard; ...

70 @Jac cahn hilliard depth averaged; ...
[] };

odefun desc = {'Fick''s law (no −flux boundary conditions)'; ...
'regular −solution Fick''s law (no −flux boundary conditions)'; ...
'Cahn −Hilliard equation'; ...

75 ' depth −averaged Cahn −Hilliard with reactions'; ...
'Cahn −Hilliard −Cook equation' };

ind = strmatch(params.model.diffusion, odefun code, 'exact');
if (isempty(ind))

error( 'unknown diffusion model: %s', params.model.diffusion);
80 end

odefun = odefun func {ind };
jacfun = odefun jac {ind };
desc = cat(2, 'bulk kinetics : ', odefun desc {ind }) ;
if (ind == 3)

85 if (params .ndg.Da == 0)
odefun = @odefun cahn hilliard;
jacfun = @Jac cahn hilliard;
desc = cat(2, desc, ' (no −flux boundary conditions)');

elseif (params .ndg.Da == Inf)
90 odefun = @odefun cahn hilliard BTL;

jacfun = @Jac cahn hilliard BTL;
desc = cat(2, desc, ' (BTL specialization)');

elseif ( ¬isempty(params.model.C rate))
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odefun = @odefun cahn hilliard C rate;
95 jacfun = @Jac cahn hilliard C rate;

desc = cat(2, desc, ' (constant C −rate )');
else

odefun = @odefun cahn hilliard reaction;
jacfun = @Jac cahn hilliard reaction;

100 desc = cat(2, desc, ' (reaction boundary conditions)');
end

end
disp ( desc);

105

% Pick the integrator
integrator code = {'ode15s' ; ...

'ode23'; ...
'ode23s' ; ...

110 'ode45 '; ...
'backward euler'; ...
'crank nicolson' };

in tegrator func = {@ode15s; ...
@ode23; ...

115 @ode23s; ...
@ode45; ...
@odebe; ...
@odecn};

integrator desc = {'ode15s (built −in)'; ...
120 'ode23 (built −in)' ; ...

'ode23s (built −in)'; ...
'ode45 (built −in)' ; ...
'backward Euler'; ...
'Crank −Nicolson' };

125 ind = strmatch(params.num.ode, integrator code, 'exact');
if (isempty(ind))

error( 'unknown integrator: %s', params.num.ode);
end
integrator = integrator func {ind };

130 desc = cat(2, 'time stepper : ' , integrator desc {ind }) ;
disp(desc);

% Pick a meta −integrator if needed
135 meta integrator = [];

if (params.model.equilibrate)
disp('specialization: computing steady −state solution');
meta integrator = @metafun equilibrium;

elseif (params.model.SRL limit)
140 disp( 'specialization: SRL regime');

meta integrator = @metafun SRL;
elseif ( strcmp(params.model.diffusion,'cahn hilliard cook') ...

| | strcmp(params .model.diffusion,'chcr') ...
| | strcmp(params .model.diffusion,'chc') )
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145 disp('specialization: stochastic Cahn −Hilliard −Cook');
meta integrator = @metafun cahn hilliard cook;

end

150 % Store a few constants
N = params.num.N;
h = params.ndg.L / N;

155 % Preallocate memory for the arrays used by the odefuns
cs = zeros(N+1, 1); % approximation for the concentrations at the

% control volume boundaries
c1s = zeros(N+1, 1); % approximation for the first (spatial)

% derivatives of the concentration field at the
160 % control volume boundaries

lap = zeros(N+1, 1); % approximation for the Laplacian at the
% control volume boundaries

c3s = zeros(N+1, 1); % approximation for the third (spatial)
% derivatives of the concentration field at the

165 % control volume boundaries
Js = zeros(N+1, 1); % approximation for the fluxes at the

% control volume boundaries
cbars t = zeros(N, 1); % time derivative of cbars

% The temp variables are intermediates in the Jacobian computations
170 temp1 = zeros(N+1, 1);

temp2 = zeros(N+1, 1);
% The following are only used by the reaction boundary conditions

cl = 0; % approximation for the concentration at the left edge x 0
cr = 0; % approximation for the concentration at the right edge x N

175 lapl = 0; % approximation for the Laplacian (which is just the second
% derivative in the 1 −d case) at the left edge x 0

lapr = 0; % approximation for the Laplacian (which is just the second
% derivative in the 1 −d case) at the right edge x N

aL = 0;
180 aF = 0;

aLl = 0;
aFl = 0;
aLr = 0;
aFr = 0;

185 mul = 0;
mur = 0;

% Make the differentiation matrices. Di * cbars yields the vector of ith
190 % derivatives of c at the control volume boundaries with the following

% exceptions: first, the first and last elements of Di * cbars are 0 because
% these are primarily used by the no −flux computations; second, the second
% and second−to −last elements of Di * cbars are computed using the
% homogeneous Neumann boundary conditions.

195 D0 = sparse(2:N, 2:N, +1/2, N+1, N) ...
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+ sparse(2:N, 1:(N −1) , +1/2, N+1, N);
D1 = sparse(2:N, 2:N, +1/h, N+1, N) ...

+ sparse(2:N, 1:(N −1) , −1/h, N+1, N);
D3 = sparse(3:(N −1), 4:N, +1/hˆ3, N+1, N) ...

200 + sparse(3:( N−1), 3:(N −1), −3/hˆ3, N+1, N) ...
+ sparse(3:(N −1), 2:(N −2), +3/hˆ3, N+1, N) ...
+ sparse(3:(N −1), 1:(N −3), −1/hˆ3, N+1, N);

D3(2,1:4) = [+25, −39,+15, −1]/(10 * hˆ3);
D3( end−1,( end−3): end ) = [+1, −15,+39, −25]/(10 * hˆ3);

205

% Make differentiation matrices for the mid −points of the control volumes.
% Unlike the above, these compute the derivatives even at the ends; these
% two values are computed using a formula modified to account for the

210 % variational boundary condition.
D0 mid = speye(N);
D1 mid = sparse(2:(N −1), 3:N, +1/(2 * h), N, N) ...

+ sparse(2:(N −1), 1:(N −2), −1/(2 * h), N, N);
D1 mid(1,1:2) = [ −1, +1]/(2 * h);

215 D1 mid(N,(N −1) :N) = [ −1,+1]/(2 * h);
D2 mid = sparse(2:(N −1), 3:N, +1/hˆ2, N, N) ...

+ sparse(2:( N−1), 2:(N −1), −2/hˆ2, N, N) ...
+ sparse(2:(N −1), 1:(N −2), +1/hˆ2, N, N);

D2 mid(1,1:3) = [ −13,+14, −1]/hˆ2;
220 D2 mid(N,(N −2) :N) = [ −1,+14, −13]/hˆ2;

225

%%%%%%%%%%%%%%%%%%%%
% DIFFUSION MODELS %
%%%%%%%%%%%%%%%%%%%%

230 % Fick's law c t=c xx with no −flux boundary conditions
% the Jacobian is independent of c, so may be precomputed
Jf = 1/hˆ2 * ( sparse(1:N, 1:N, [ −1; −2+zeros(N −2,1); −1], N, N)...

+ sparse(1:(N −1), 2:N, +1, N, N)...
+ sparse(2:N, 1:(N −1) , +1, N, N) );

235 function Jac = Jac fick(t,cbars)
Jac = Jf;

end
function [ cbars t,Jac] = odefun fick(t,cbars)

Js = −D1* cbars;
240 cbars t = ( −1/h) * diff (Js);

if (nargout > 1)
Jac = Jf;

end
end

245
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% This is the Fick's law using the regular solution model chemical potential
% a(1−2* c) + log(c/(1 −c)). Note that when a >2, the system is
% phase−separating, and the solutions will have discontinuities. We still

250 % employ no−flux boundary conditions.
function Jac = Jac fick regular(t,cbars)

temp1 = c1s. * (2 * params.ndg.a − 1./((1 −cs).ˆ2));
temp2 = 2 * params.ndg.a * cs − 1./(1 −cs);
fJac = sparse(1:(N+1), 1:(N+1), temp1, N+1, N+1) * D0 ...

255 + sparse(1:(N+1), 1:(N+1), temp2, N+1, N+1) * D1;
Jac = ( −1/h) * diff(fJac);

end
function [ cbars t,Jac] = odefun fick regular(t,cbars)

cs = D0* cbars;
260 c1s = D1 * cbars;

Js = 2 * params.ndg.a * cs. * c1s − c1s./(1 −cs);
cbars t = ( −1/h) * diff (Js);
if (nargout > 1)

Jac = Jac fick regular(t,cbars);
265 end

end

% Compute the Jacobian of the Cahn −Hilliard flux (including the 0 −flux at
270 % the boundaries). It is assumed that cs, c1s, and c3s have all already

% been computed and stored in global variables.
function fJac = fJac cahn hilliard()

temp1 = c3s + c1s. * (2 * params.ndg.a − 1./((1 −cs).ˆ2));
temp2 = 2 * params.ndg.a * cs − 1./(1 −cs);

275 fJac = sparse(1:(N+1), 1:(N+1), temp1, N+1, N+1) * D0 ...
+ sparse(1:(N+1), 1:(N+1), temp2, N+1, N+1) * D1 ...
+ sparse(1:(N+1), 1:(N+1), cs, N+1, N+1) * D3;

end

280

% Compute the Jacobian of the Cahn −Hilliard time −derivative, taking the
% no−flux and no −gradient boundary conditions into account.
function oJac = Jac cahn hilliard(t,cbars)

fJac = fJac cahn hilliard();
285 oJac = ( −1/h) * diff(fJac);

end

% Cahn−Hilliard diffusion with no −flux boundary conditions
290 % (along with the variational boundary condition)

function [cbars t,Jac] = odefun cahn hilliard(t,cbars)
% Compute 2nd−order −accurate approximations for the concentrations and
% their 1st − and 3rd −derivatives at all control volume boundaries
% except the leftmost and rightmost. The variational boundary

295 % condition is used to derive special formulas for the 3rd derivatives
% near the ends.
cs = D0* cbars ;
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c1s = D1 * cbars ;
c3s = D3 * cbars;

300

% Compute 2nd−order −accurate approximations for the fluxes at all
% control volume boundaries (including the leftmost and rightmost).
% The no−flux boundary condition is implemented exactly.
Js = (2 * params .ndg.a) * cs. * c1s − c1s./(1 −cs) + cs. * c3s;

305

% This formula is exact in the Finite Volume setting. Given that Js is
% 2nd−order accurate, it might look like we should only get 1st −order
% convergence; however, it can be shown that with Js computed as above,
% cbars t(i) is 2nd −order accurate everywhere except at i=1,2,N −1,N.

310 cb ars t = ( −1/h) * diff(Js);

% Compute the Jacobian of cbars t if requested
if (nargout > 1)

Jac = Jac cahn hilliard(t,cbars);
315 end

end

% Compute the Jacobian of the Cahn −Hilliard −with −reactions flux. It is
320 % assumed that cs, c1s, c3s, cl, cr, lapl, lapr, aLl, aLr, aFl, and aFr

% have all already been computed and stored in global variables.
function fJac = fJac cahn hilliard reaction()

% Compute the flux gradients for a system with no −flux boundary
% conditions

325 fJac = fJac cahn hilliard();

% Adjust the first and last flux gradients to take the reactions into
% account
c = [cl , cr];

330 lap = [lapl, lapr];
aL = [aLl , aLr];
aF = [aFl , aFr];
dc = [+1, 0, 0, 0, 0, 0; ...

0, 0, 0, 0, 0, +1 ];
335 dlap = [ −25, +32, −7, 0, 0, 0; ...

0, 0, 0, −7, +32, −25] / (11 * hˆ2);
dR = (params.ndg.w * params.ndg.Da) ...

* ( ( aL. * ( −2* params.ndg.a * (1 −c)+1./c+lap) ...
− exp(params.ndg.mu e) * aF ...

340 . * (2 * params .ndg.a * c−1./(1 −c)+lap) ) * dc ...
+ ( aL. * ( −(1 −c)) − exp(params.ndg.mu e) * aF. * (c) ) * dlap );

fJac(1,1:3) = −dR(1:3);
fJac( end,(N −2):N) = +dR(4:6);

end
345

% Compute the Jacobian of the CHR time −derivative , taking the
% reaction and variational boundary conditions into account.
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function oJac = Jac cahn hilliard reaction(t,cbars)
350 fJac = fJac cahn hilliard reaction();

oJac = ( −1/h) * diff(fJac);
end

355 % Cahn−Hilliard diffusion with reaction boundary conditions; the reactions
% are modeled using the kinetic law of mass action and my variational
% chemical activities
function [cbars t,Jac] = odefun cahn hilliard reaction(t,cbars)

% Perform the no −flux computations
360 cb ars t = odefun cahn hilliard(t,cbars);

% Reset the time derivatives at the edges to satisfy the reaction
% boundary condition rather than the no −flux boundary condition;
% this takes advantage of the fact that the Js vector is filled in

365 % already. The concentrations and laplacians are computed at the
% end−points using Taylor expansions which explicitly account for the
% variational boundary condition.
cl = cbars(1);
cr = cbars(end );

370 lapl = 1/(11 * hˆ2) * ( −25* cbars(1) +32 * cbars(2) −7* cbars(3));
lapr = 1/(11 * hˆ2) * ( −25* cbars(end)+32 * cbars(end −1) −7* cbars (end −2));
aLl = cl * exp(params.ndg.a * (1 −cl)ˆ2 − ( 1−cl) * lapl);
aLr = cr * exp(params.ndg.a * (1 −cr)ˆ2 − ( 1−cr) * lapr);
aFl = (1 −cl) * exp(params.ndg.a * clˆ2 + cl * lapl);

375 aFr = (1 −cr) * exp(params.ndg.a * crˆ2 + cr * lapr);
Js(1) = ( −params.ndg.w * params.ndg.Da) * (aLl −exp(params.ndg.mu e) * aFl);
Js (end) = (+params.ndg.w * params .ndg.Da) * (aLr −exp(params.ndg.mu e) * aFr);
cbars t(1) = ( −1/ h) * (Js(2) − Js(1));
cbars t(end) = ( −1/h) * (Js(end ) − Js(end −1));

380

% Compute the Jacobian of cbars t if requested
if (nargout > 1)

Jac = Jac cahn hilliard reaction(t,cbars);
end

385 end

% Compute the Jacobian of the constant C −rate flux. It is
% assumed that cs, c1s, c3s, cl, cr, lapl, lapr, aLl, aLr, aFl, and aFr

390 % have all already been computed and stored in global variables .
function fJac = fJac cahn hilliard C rate()

% Compute the Jacobians of the flux vector using reaction boundary
% conditions.
fJac = fJac cahn hilliard reaction();

395

% Correct these Jacobians for the dependence of mu e on the
% concentrations near both boundaries.
c = [cl , cr];
lap = [lapl, lapr];
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400 aL = [aLl , aLr];
aF = [aFl , aFr];
dc = [+1, 0, 0, 0, 0, 0; ...

0, 0, 0, 0, 0, +1 ];
dlap = [ −25, +32, −7, 0, 0, 0; ...

405 0, 0, 0, −7, +32, −25] / (11 * hˆ2);
dsaL = (params.ndg.w * params.ndg.Da/h) ...

* ( ( aL. * ( −2* params.ndg.a * (1 −c)+1./c+lap) ) * dc ...
+ ( aL. * ( −(1 −c)) ) * dlap );

dsaF = (params.ndg.w * params.ndg.Da/h) ...
410 * ( ( aF. * (2 * params.ndg.a * c−1./(1 −c)+lap) ) * dc ...

+ ( aF. * (c) ) * dlap );
saL = (params.ndg.w * params.ndg.Da/h) * (aLl+aLr);
saF = (params.ndg.w * params.ndg.Da/h) * (aFl+aFr);
dmu e = exp (−params.ndg.mu e)/saFˆ2 ...

415 * ( saF* dsaL − (params.model.C rate * N+saL) * dsaF );
fJac(1,1:3) = fJac(1,1:3) ...

+ params.ndg.w * params.ndg.Da ...

* exp(params.ndg.mu e) * aFl * dmu e(1:3);
fJac (1,(N −2):N) = fJac(1,(N −2):N) ...

420 + params.ndg.w * params.ndg.Da ...

* exp(params.ndg.mu e) * aFl * dmu e(4:6);
fJac (N+1,1:3) = fJac(N+1,1:3) ...

− params.ndg.w * params.ndg.Da ...

* exp(params.ndg.mu e) * aFr * dmu e(1:3);
425 fJac (N+1,(N −2):N) = fJac(N+1,(N −2):N) ...

− params.ndg.w * params.ndg.Da ...

* exp(params.ndg.mu e) * aFr * dmu e(4:6);
end

430

% Compute the Jacobian of the constant −C−rate time −derivative.
function oJac = Jac cahn hilliard C rate(t,cbars)

fJac = fJac cahn hilliard C rate();
oJac = ( −1/h) * diff(fJac);

435 end

% This function performs a constant C −rate integration of the CHR equations.
% This is done by computing a new value for params.ndg.mu e during each call

440 % in order to fix a constant value for the sum of the reaction boundary
% fluxes.
function [cbars t,Jac] = odefun cahn hilliard C rate(t,cbars)

% Perform the no −flux computations
cbars t = odefun cahn hilliard(t,cbars);

445

% Reset the time derivatives at the edges to satisfy the reaction
% boundary condition rather than the no −flux boundary condition;
% this takes advantage of the fact that the Js vector is filled in
% already. The concentrations and laplacians are computed at the

450 % end−points using Taylor expansions which explicitly account for the
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% variational boundary condition.
cl = cbars(1);
cr = cbars(N);
lapl = 1/(11 * hˆ2) * ( −25* cbars(1)+32 * cbars(2) −7* cbars(3));

455 lapr = 1/(11 * hˆ2) * ( −25* cbars(N)+32 * cbars(N −1) −7* cbars(N −2));
aLl = cl * exp(params.ndg.a * (1 −cl)ˆ2 − ( 1−cl) * lapl);
aLr = cr * exp(params.ndg.a * (1 −cr)ˆ2 − ( 1−cr) * lapr);
aFl = (1 −cl) * exp(params.ndg.a * cl ˆ2 + cl * lapl);
aFr = (1 −cr) * exp(params.ndg.a * cr ˆ2 + cr * lapr);

460 saL = (params.ndg.w * params.ndg.Da/h) * (aLl+aLr);
saF = (params.ndg.w * params.ndg.Da/h) * (aFl+aFr);
params.ndg.mu e = log( (params.model.C rate * N+saL) / saF );
Js (1) = ( −params.ndg.w * params.ndg.Da) * (aLl −exp(params.ndg.mu e) * aFl);
Js (end) = (+params.ndg.w * params .ndg.Da) * (aLr −exp(params.ndg.mu e) * aFr);

465 cbars t(1) = ( −1/ h) * (Js(2) − Js(1));
cbars t(end) = ( −1/h) * (Js(end ) − Js(end −1));

% Reset the appropriate element of the output variable MU.
% XXXThis may fail for the built −in integrators which can take steps

470 % larger than diff(ts), and it will be slow for large ts arrays.
[min val,min ind] = min(abs(ts(:) −t));
MU(min ind) = params.ndg.mu e;

% Compute the Jacobian of cbars t if requested
475 if (nargout > 1)

Jac = Jac cahn hilliard C rate(t,cbars);
end

end

480

% Compute the Jacobian of the BTL time −derivative , taking the
% mu=mu{ext } and variational boundary conditions into account.
function oJac = Jac cahn hilliard BTL(t,cbars)

% Compute the flux gradients for a system with no −flux boundary
485 % conditions

fJac = fJac cahn hilliard();

% Adjust the first and last flux gradients to take the mu=mu {ext }
% boundary condition into account

490 fJac (1,1) = 1/h * (params.ndg.mu e−mul+2 * params .ndg.a * cl −1/(1 −cl));
fJac(1,1:3) = fJac(1,1:3) + cl/h * [ −13,+14, −1]/(11 * hˆ2);
fJac( end,end) = 1/h * (mur −params .ndg.mu e−2* params.ndg.a * cr +1/(1 −cr));
fJac(end ,end −2: end) = fJac(end ,end −2: end) − cr/h * [ −1,+14, −13]/(11 * hˆ2);

495 % Compute the gradients for the time derivatives
oJac = ( −1/ h) * diff(fJac);

end

500 % Cahn−Hilliard diffusion in the Bulk −Transport −Limited regime;
% thus the boundary reactions are assumed to happen infinitely quickly,
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% so the kinetic law of mass action may be replaced with equality of
% chemical potentials
function [cbars t,Jac] = odefun cahn hilliard BTL(t,cbars)

505 % Perform the no −flux computations
cbars t = odefun cahn hilliard(t,cbars);

% Reset the time derivatives at the edges to satisfy the
% fixed −chemical −potential boundary condition rather than the no −flux

510 % boundary condition. The method for doing this is very imperfect :
% at the left edge, mu is computed at x {1/2 } using the FVM formulas
% with c'(x 0)=0. It is then assumed that mu {−1/2 } is equal to
% mu{ext }, and the flux at x 0 is computed as
%−c 0* (mu {+1/2 }−mu {−1/2 }) /h.

515 cl = cbars(1);
cr = cbars(end );
lapl = 1/(11 * hˆ2) * ( −13* cbars(1) +14 * cbars(2) −cbars(3));
lapr = 1/(11 * hˆ2) * ( −13* cbars(end)+14 * cbars(end −1)−cbars(end −2));
mul = params.ndg.a * (1 −2* cl) + real(log(cl/(1 −cl))) − lapl ;

520 mur = params.ndg.a * (1 −2* cr) + real(log(cr/(1 −cr))) − lapr ;
Js(1) = −cbars(1) * (mul −params.ndg.mu e)/h;
Js (end) = −cbars(end ) * (params.ndg.mu e−mur)/h;
cbars t(1) = ( −1/ h) * (Js(2) − Js(1));
cbars t(end) = ( −1/h) * (Js(end ) − Js(end −1));

525

% Compute the Jacobian of cbars t if requested
if (nargout > 1)

Jac = Jac cahn hilliard BTL(t,cbars);
end

530 end

% This is the odefun for the depth −averaged Cahn−Hilliard −with −reactions
% kinetics. In this case, cbars(i) is the concentration of a 1 −d ion

535 % channel, and the kinetics are driven entirely by the boundary reactions.
% As such, there are no diffusive fluxes, and this isn't a finite volume
% method at all. For consistency, however, we retain the model in which
% the inputs are the control −volume averages.
function Jac = Jac cahn hilliard depth averaged(t,cbars)

540 Jac aF = sparse (1:N, 1:N, ...
(2 * params .ndg.a * cs+lap −1./(1 −cs)). * aF, ...
N, N) * D0 mid ...

+ sparse (1:N, 1:N, c1s. * aF, N, N) * D1 mid ...
+ sparse (1:N, 1:N, cs. * aF, N, N) * D2 mid;

545 Jac aL = sparse (1:N, 1:N, ...
(2 * params .ndg.a * (cs −1)+lap+1./cs). * aL, ...
N, N) * D0 mid ...

+ sparse (1:N, 1:N, c1s. * aL, N, N) * D1 mid ...
+ sparse (1:N, 1:N, (cs −1) . * aL, N, N) * D2 mid;

550 Jac = exp(params.ndg.mu e) * Jac aF − Jac aL;
end
function [ cbars t,Jac] = odefun cahn hilliard depth averaged(t,cbars)
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cs = D0 mid * cbars;
c1s = D1 mid * cbars;

555 lap = D2 mid * cbars;
aL = cs . * exp ((1 −cs). * ( params.ndg.a * (1 −cs) − lap) + 1/2 * c1s.ˆ2);
aF = (1 −cs). * exp( cs . * (params .ndg.a * cs + lap) + 1/2 * c1s.ˆ2);
cbars t = exp(params.ndg.mu e) * aF − aL;
if ( nargout > 1)

560 Jac = Jac cahn hilliard depth averaged(t,cbars);
end

end

565

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SPECIALIZED INTEGRATORS %

570 %%%%%%%%%%%%%%%%%%%%%%%%%%%

% Solve directly for a nearby steady state rather than doing any time
% stepping.
function [T,Y] = metafun equilibrium(odefun, integrator, options)

575 % optimization function; this is only needed to strip the time
% parameter from the inputs to odefun
function [cbars t,Jac] = foo(cbars)

if (nargout == 1)
cb ars t = odefun(0,cbars);

580 else
[ cbars t,Jac] = odefun(0,cbars);

end
end

585 % The time vector doesn't make much sense here
T = Inf;

% Solve for the steady −state
f s options = optimset('Display','on', 'Jacobian','on', ...

590 ' TolFun',params.num.AbsTol, ...
'TolX',params.num.RelTol);

Y = fsolve(@foo, reshape(cbars0,N,1), fs options)';
end

595

% This is the integrator for Cahn −Hilliard diffusion with reaction boundary
% conditions in the Surface −Reaction −Limited regime. Thus between
% time−steps of the reaction ODEs, the bulk concentration field is

600 % completely relaxed (using no −flux boundary conditions).
function [T,Y] = metafun SRL(odefun, integrator, options)

% Initialize the outputs
T = ts;
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Y = zeros(numel(cbars0), numel(ts)); % we'll transpose later
605

% Set up future calls to fsolve
fs options = optimset('Display','off', 'Jacobian', 'on', ...

'TolFun',params.num.AbsTol, ...
'TolX',params.num.RelTol);

610 function [ cbars t,Jac] = foo(cbars)
if (nargout == 1)

cb ars t = odefun cahn hilliard(0,cbars);
else

[cbars t,Jac] = odefun cahn hilliard(0,cbars);
615 end

end

% initial bulk relaxation
Y(:,1) = fsolve(@foo, reshape (cbars0,N,1), fs options);

620 if ( any( isnan(Y(:,1))) | | any(Y(:,1) ≥1) | | any(Y(:,1) ≤0) )
error('oops #1');

end

% integration
625 for i=2:numel(ts)

% Perform the bulk relaxation using the Crank −Nicolson method.
% Perform a few backward Euler iterations before and after.
% This is recommended in a paper by Ole Osterby to reduce the
% oscillations that arise when using the Crank −Nicolson integrator

630 % when the initial conditions don't already satisfy the boundary
% conditions. In our case, the problem arises by ignoring the
% reactions during the bulk relaxation.

% Step the boundary conditions using the requested integrator.
635 % Use 3 time steps instead of just 2 to ensure that built −in

% integrators don't return data for ALL intermediate time steps.
[Tbc,Ybc] = integrator(@odefun cahn hilliard reaction,...

[T(i −1),1/2 * (T(i −1)+T(i)),T(i)], ...
Y(:,i −1), options);

640 if ( any(isnan(Ybc(:))) | | any(Ybc(:) ≥1) | | any(Ybc(:) ≤0) )
error('oops #2' );

end

% Bulk relaxation
645 Y(:, i) = fsolve(@foo, Ybc(end,:)', fs options);

if ( any(isnan(Y(:,i))) | | any(Y(:, i) ≥1) | | any(Y(:,i) ≤0) )
error('oops #3' );

end
end

650

% Transpose the output matrix to put it in the standard form of
% Matlab 's solvers' output.
Y = Y';

end
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655

% Cahn−Hilliard −Cook stochastic integrator
function [T,Y] = metafun cahn hilliard cook(odefun, integrator, options)

660 % initialization
T = reshape(ts,numel(ts),1);
Y = zeros( numel(cbars0) , numel(ts) );

% Get the relevant parameters from the ODE options structure
665 tolx = odeget(options, 'AbsTol');

max step = odeget(options, 'MaxStep', Inf);

% Build the optimization options structure; make sure that fsolve ()
% doesn't talk to the user every time it is called

670 fs options = optimset('Display','off');
if ( ¬isempty (tolx) && (tolx > 0))

f s options = optimset(fs options, 'TolX',tolx, 'TolFun',tolx);
end

675 % The data for the first time step is given to us
Y(:,1) = reshape(cbars0,numel(cbars0),1);

% March through the remaining time steps
ys old = Y(:,1);

680 prefactor = sqrt(params.ndg.w / hˆ3);
for n=1:(numel(ts) −1)

t n = ts(n);
t np1 = ts(n+1);
∆ t = t np1 − t n;

685

% Decide how many integration steps to take between the two
% time−steps at which solutions are to be output
num substeps = max( 1 , ceil(abs (∆ t/max step) − 0.01) );

690 % Integrate from t n to t np1 in num substeps evenly −spaced steps
sub ∆ t = ∆ t / num substeps;
for j=1:num substeps

t old = t n + (j −1) * s ub ∆ t;
t new = t n + j * sub ∆ t;

695 yprime old = odefun cahn hilliard(t old, ys old);
fun = @(ys)( ys −ys old ...

− (s ub ∆ t/2) ...

* ( y prime old ...
+ odefun cahn hilliard(t new,ys)));

700 etas = prefactor * sqrt(sub ∆ t) ...

* sqrt(ys old(1:( end−1)) + ys old(2:end)) ...
. * randn(numel(cbars0) −1, 1);

ys old = fsolve(fun, ys old, fs options) ...
+ ([0;etas ] − [etas;0]);

705 end
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Y(:,n+1) = ys old;
end

% Transpose the output matrix to put it in the standard form of
710 % Matlab's solvers' output.

Y = Y.';
end

715 %%%%%%%%%%%%%%%%%%%%%%
% INTEGRATETHE ODEs %
%%%%%%%%%%%%%%%%%%%%%%

% Build the options set for the integrator
720 options = odeset();

if ( ¬isempty(params.num.RelTol) && (params.num.RelTol > 0) )
options = odeset(options, 'RelTol' , params.num.RelTol);

end
if ( ¬isempty(params .num.MaxStep) && (params.num.MaxStep > 0) )

725 options = odeset(options, 'MaxStep', params.num.MaxStep);
end
if ( ¬isempty(params .num.AbsTol) && (params.num.AbsTol > 0) )

options = odeset(options, 'AbsTol' , params.num.AbsTol);
end

730 if ( ¬isempty(jacfun) )
options = odeset(options, 'Jacobian', jacfun);

end

% Integrate
735 if (nargout > 2)

MU = params.ndg.mu e + zeros(numel(ts),1);
end
tic;
if ( isempty(meta integrator))

740 [ T,Y] = integrator(odefun, ts, cbars0, options);
else

[T,Y] = meta integrator(odefun, integrator, options);
end
toc;

745 end
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